RRJoB

Mechanism of Action of Essential Oils and their Major Components

[{“box”:0,”content”:”

n

n

 > 

n

n

 > 

n

n

n

n

n

n

n

By [foreach 286]u00a0

u00a0Naga Parameswari Mangalagiri, Kavitha Velagapudi, Shravan Kumar Panditi, Naveena Lavanya Latha Jeevigunta,

[/foreach]
nJanuary 10, 2023 at 6:41 am

n

nAbstract

n

The essential oil of lemongrass, palm rosa and eucalyptus were found to be good antimicrobial agents. To a large extent the results suggest their potential use as chemotherapeutic agents, food preserving agents, and disinfectants. However before considering these compounds as chemotherapeutic agents against human/animal diseases, it is important to study their cytotoxic and mutagenic effects. Studies were then carried to investigate the probable mechanism by which these compounds act against Gram negative (E. coli) and Gram-positive (Staphylococcus aureus) bacteria. The leakage of potassium ions from the cell suspension of bacteria and change in absorption maxima in presence of the test compounds was monitored. The results indicate that, in presence of crude essential oils the leakage of bacterial cellular material was higher than that showed in presence of the individual major components of essential oils, which is due their ability to disrupt the permeability barrier of microbial membrane structures, although the presence of additional mechanisms or targets cannot be ruled out.

n

n

n

n

Volume :u00a0u00a010 | Issue :u00a0u00a03 | Received :u00a0u00a0September 16, 2021 | Accepted :u00a0u00a0October 29, 2021 | Published :u00a0u00a0November 29, 2021n[if 424 equals=”Regular Issue”][This article belongs to Research & Reviews : Journal of Botany(rrjob)] [/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue Mechanism of Action of Essential Oils and their Major Components under section in Research & Reviews : Journal of Botany(rrjob)] [/if 424]
Keywords Plant essential oils, anti bacterial, anti fungal, potassium leakage, absorption maxima

n

n

n

n

n


n[if 992 equals=”Transformative”]

n

n

Full Text

n

n

n

[/if 992][if 992 not_equal=”Transformative”]

n

n

Full Text

n

n

n

[/if 992] n


nn

[if 379 not_equal=””]n

[foreach 379]n

n[/foreach]

n[/if 379]

n

References

n[if 1104 equals=””]n

1. Rotimi Larayetan, Zacchaeus S. Ololade, Oluranti O. Ogunmola, Ayodele Ladokun, “”Phytochemical Constituents, Antioxidant, Cytotoxicity, Antimicrobial, Antitrypanosomal, and Antimalarial Potentials of the Crude Extracts of Callistemon citrinus””, Evidence-Based Complementary and Alternative Medicine, vol. 2019, 14 pages, 2019. https://doi.org/ 10.1155/2019/5410923
2. Recio, M.C., and Rios, J.L. 1989. A review of some antimicrobial compounds isolated from medicinal plants reported in the literature 1978-1988. Phytopathology research. 3: 117-124.
3. Takahashi Y, Nakashima T. Actinomycetes, an Inexhaustible Source of Naturally Occurring Antibiotics. Antibiotics. 2018; 7(2):45. https://doi.org/10.3390/antibiotics7020045
4. Egorov, A. M., Ulyashova, M. M., & Rubtsova, M. Y. (2018). Bacterial Enzymes and Antibiotic Resistance. Actanaturae, 10(4), 33–48.
5. Ameryckx A, Thabault L, Pochet L, Leimanis S, Poupaert JH, Wouters J, Joris B, Van Bambeke F, Frédérick R. 1-(2-Hydroxybenzoyl)-thiosemicarbazides are promising antimicrobial agents targeting d alanine-d-alanine ligase in bacterio. Eur J Med Chem. 2018 Nov 5;159:324-338. doi: 10.1016/j.ejmech.2018.09.067. Epub 2018 Sep 28. PMID: 30300845.
6. Rai, M., Pandit, R., Gaikwad, S., & Kövics, G. (2016). Antimicrobial peptides as natural biopreservative to enhance the shelf-life of food. Journal of food science and technology, 53(9), 3381–3394. https://doi.org/10.1007/s13197-016-2318-5
7. Singh V. P. (2018). Recent approaches in food bio-preservation – a review. Open veterinary journal, 8(1), 104–111. https://doi.org/10.4314 /ovj.v8i1.16
8. Booth, I.R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49: 359-378.
9. Poolman, B., Driessen, A.J.M., and Konings, W.N. 1987. Regulation of solute transport in streptococci by external and internal pH values. Microbiological Reviews. 51: 498-508.
10. Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Membrane Proteins. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26878/
11. Davidson, P.M., and Branen, A.L. 1981. Antimicrobial activity of non-halogenated phenolic compounds. J. Food Prot. 44: 623-632.
12. L. De León , L. Moujir. Activity and mechanism of the action of zeylasterone against Bacillus subtilis. Journal of Applied Microbiology, Volume 104, Issue 5May 2008, Pages 1266-1274
13. Liu, D., Ragothama, K.G., Hasegawa, P.M., and Bressan, R.A. 1988. Osmotin over expression in potato delays development of disease symptoms. Proc. Natl. Acad. Sci. USA. 91: 1888.
14. Jingyi Liu, Changling Du, Henry T. Beaman and Mary Beth B. Monroe Characterization of Phenolic Acid Antimicrobial and Antioxidant Structure–Property Relationships. Pharmaceutics 2020, 12, 419; doi:10.3390/pharmaceutics12050419
15. Hugo, W.B., and Bloomfield, S.F. 1971a. Studies on the mode of action of the phenolic antibacterial agent fentichlor against Staphylococcus aureusand Escherichia coli. II. The effects of fentichlor on the bacterial membrane and the cytoplasmic constituents of the cell. J. Appl. Bacteriol. 34(3):569-578.
16. Hugo, W.B., and Bloomfield, S.F. 1971b. Studies on the mode of action of the phenolic antibacterial agent fentichlor against Staphylococcus aureusand Escherichia coli. III. The effect of fentichlor on the metabolic activities of Staphylococcus aureusand Escherichia coli. J. Appl. Bacteriol. 34(3): 579-591.
17. Paul Lee, Joyce D. Linderman, Sheila Smith, Robert J. Brychta, Juan Wang, Christopher Idelson, Rachel M. Perron, Charlotte D. Werner, Giao Q. Phan, Udai S. Kammula, Electron Kebebew, Karel Pacak, Kong Y. Chen, Francesco S. Celi, Irisin and FGF21 Are Cold-Induced Endocrine Activators of Brown Fat Function in Humans, Cell Metabolism, Volume 19, Issue 2, 2014, Pages 302-309, ISSN 1550-4131
18. Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial Activity of Some Essential Oils- Present Status and Future Perspectives. Medicines (Basel, Switzerland), 4(3), 58. https://doi.org/10.3390/medicines4030058
19. Salmond, C.V., Kroll, R.G., and Booth, I.R. 1984. The effect of food preservatives on pH homeostasis in Escherichia coli. J. Gen. Microbiol. 130:2845-2850.
20. Knobloch, K., Pauli, A., Iberl, B., Weis, N., and Weigand, H. 1988. Antibacterial activity and antifungal properties of essential oil components. Journal of Essential oils Research.1:119-128.
21. Bruno C. Marreiros, Filipa Calisto, Paulo J. Castro, Afonso M. Duarte, Filipa V. Sena, Andreia F. Silva, Filipe M. Sousa, Miguel Teixeira, Patrícia N. Refojo, Manuela M. Pereira, Exploring membrane respiratory chains, Biochimica et Biophysica Acta (BBA) – ioenergetics, Volume 1857, Issue 8, 2016, Pages 1039-1067, ISSN 0005-2728.
22. Han, Y., Sun, Z., & Chen, W. (2019). Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene against Listeria monocytogenes. Molecules (Basel, Switzerland), 25(1), 33. https://doi.org/10.3390/molecules25010033.
23. Ultee, Annemieke & Wells-Bennik, Marjon & Moezelaar, Roy. (2002). The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus cereus.
Applied and environmental microbiology. 68. 1561-8. 10.1128/AEM.68.4.1561-1568.2002.
24. Cristani, Mariateresa & D’Arrigo, Manuela & Mandalari, Giuseppina & Castelli, Francesco & Sarpietro, mariagrazia & Micieli, Dorotea & Venuti, Vincenza & Bisignano, Giuseppe & Saija, Antonella & Trombetta, Domenico. (2007). Interaction of Four Monoterpenes Contained in Essential Oils with Model Membranes: Implications for Their Antibacterial Activity. Journal of agricultural and food chemistry. 55. 6300-8. 10.1021/jf070094x.
25. Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel, Switzerland), 6 (12), 1451–1474. https://doi.org/10.3390 /ph6121451
26. Sikkema, J., de Bont, J.A.M., and Poolman, B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews. 59:201-222.
27. Cox, S.D., Mann, C.M., Markham, J.L., Bell, H.C., Gustafson, J.E., Warmington, J.R., and Wyllie, S.G. 2000. The mode of antimicrobial action of the essential oil of Melaleucaalternifolia (Tea tree oil). Journal of Applied Microbiology. 88: 170-175.
28. Zeinab Breijyeh, Buthaina Jubeh and Rafik Karaman Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340; doi:10.3390/molecules25061340.
29. Heipieper, H.J., Diefenbach, R., and Keweloh, H. 1992. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putidaP8 from substrate toxicity. Appl. Environ. Microbiol. 58: 1847- 1852.
30. Naga Parameswari Mangalagiri, Shravan Kumar Panditi, Naveena Lavanya Latha Jeevigunta. Antimicrobial activity of essential plant oils and their major components, Heliyon, Volume 7, Issue 4, 2021, e06835, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2021.e06835.
31. Yanping Wu, JinrongBai, Kai Zhong, Yina Huang, Huayi Qi, Yan Jiang and Hong Gao Antibacterial Activity and Membrane-Disruptive Mechanism of 3-p-trans-Coumaroyl-2- hydroxyquinic Acid, a Novel Phenolic Compound from Pine Needles of Cedrusdeodara, against Staphylococcus aureus Molecules 2016, 21, 1084; doi:10.3390/molecules21081084.
32. Lopez Romero, Julio & Ríos, Humberto& Borges, Anabela & Simões, Manuel. (2015). Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evidence-based Complementary and Alternative Medicine. 2015. 10.1155/2015/795435.
33. Carson, C.F., Mee, B.J., and Riley, T.V. 2002. Mechanism of action of Melaleucaalternifolia (Tea tree oil) on Staphylococcus aureus determined by time-kill, lysis leakage and salt tolerance assays and Electron Microscopy. Antimicrob. Agent Chemothe. 46: 1914-1920.
34. Tagousop, C.N., Tamokou, JdD., Ekom, S.E. et al. Antimicrobial activities of flavonoid glycosides from Graptophyllumgrandulosum and their mechanism of antibacterial action. BMC Complement Altern Med 18, 252 (2018). https://doi.org/10.1186/s12906-018-2321-7.
35. Shabana Bowsiya, Dr. Naveen Kumar Antibacterial Activity of Tea Tree Oil against Clinical Isolates of Staphylococcus aureus Int. J. Pharm. Sci. Rev. Res., 60(2), January – February 2020; Article No. 17, Pages: 102-106.
36. Uribe, S., Ramorez, J., and Pena, A. 1985. Effects of β -pinene on yeast membrane functions. J. Bacteriol. 161: 1195-1200.
37. Perumal, S., Mahmud, R., & Ismail, S. (2017). Mechanism of Action of Isolated Caffeic Acid and Epicatechin 3-gallate from Euphorbia hirta against Pseudomonas aeruginosa. Pharmacognosy magazine, 13 (Suppl 2), S311–S315. https://doi.org/10.4103 /pm.pm_309_15.
38. Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules (Basel, Switzerland), 25(6), 1340. https://doi.org/10.3390/molecules25061340.
39. Mercedes Verdeguer, Adela M. Sánchez-Moreiras and Fabrizio Araniti. Phytotoxic Eects and Mechanism of Action of Essential Oils and Terpenoids. Plants 2020, 9, 1571; doi:10.3390/plants9111571.
40. Othman Leen, Sleiman Ahmad, Abdel-Massih Roula M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Frontiers in Microbiology, 10, 2019, 911 DOI=10.3389/fmicb.2019.00911 ISSN=1664-302X.

nn[/if 1104] [if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””], [/if 1106]
  2. n[/foreach]

n[/if 1104]

n[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=”Regular Issue”] Regular Issue[/if 424] Open Access Article

n

Editors Overview

rrjob maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

n

“},{“box”:4,”content”:”

n“},{“box”:1,”content”:”

    By  [foreach 286]n

  1. n

    Naga Parameswari Mangalagiri, Kavitha Velagapudi, Shravan Kumar Panditi, Naveena Lavanya Latha Jeevigunta

    n

  2. [/foreach]

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Research Scholar, Research Scholar, Research Scholar, Assistant Professor & Head (i/C),Department of Biotechnology, Krishna University, Machilipatnam, Krishna, Department of Biotechnology, KrUniversity, Machilipatnam, Krishna, Department of Biotechnology, KrishnUniversity, Machilipatnam, Krishna, Department of Biosciences and Biotechnology, Krishna University, Machilipatnam, Krishna,Andhra Pradesh, Andhra Pradesh, Andhra Pradesh, Andhra Pradesh,India, India, India, India
  2. n[/if 1175][/foreach]

n

n

n

n

n

Abstract

nThe essential oil of lemongrass, palm rosa and eucalyptus were found to be good antimicrobial agents. To a large extent the results suggest their potential use as chemotherapeutic agents, food preserving agents, and disinfectants. However before considering these compounds as chemotherapeutic agents against human/animal diseases, it is important to study their cytotoxic and mutagenic effects. Studies were then carried to investigate the probable mechanism by which these compounds act against Gram negative (E. coli) and Gram-positive (Staphylococcus aureus) bacteria. The leakage of potassium ions from the cell suspension of bacteria and change in absorption maxima in presence of the test compounds was monitored. The results indicate that, in presence of crude essential oils the leakage of bacterial cellular material was higher than that showed in presence of the individual major components of essential oils, which is due their ability to disrupt the permeability barrier of microbial membrane structures, although the presence of additional mechanisms or targets cannot be ruled out.n

n

n

Keywords: Plant essential oils, anti bacterial, anti fungal, potassium leakage, absorption maxima

n[if 424 equals=”Regular Issue”][This article belongs to Research & Reviews : Journal of Botany(rrjob)]

n[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Research & Reviews : Journal of Botany(rrjob)] [/if 424]

n

n

n


n[if 992 equals=”Subscription”]n

n

n

Full Text

n

n

nn[/if 992]n[if 992 not_equal=”Subscription”]n

n

Full Text

n

n

n

n


[/if 992]n[if 379 not_equal=””]

Browse Figures

n

n

[foreach 379]n

n[/foreach]

n

[/if 379]n

n

References

n[if 1104 equals=””]

1. Rotimi Larayetan, Zacchaeus S. Ololade, Oluranti O. Ogunmola, Ayodele Ladokun, “”Phytochemical Constituents, Antioxidant, Cytotoxicity, Antimicrobial, Antitrypanosomal, and Antimalarial Potentials of the Crude Extracts of Callistemon citrinus””, Evidence-Based Complementary and Alternative Medicine, vol. 2019, 14 pages, 2019. https://doi.org/ 10.1155/2019/5410923
2. Recio, M.C., and Rios, J.L. 1989. A review of some antimicrobial compounds isolated from medicinal plants reported in the literature 1978-1988. Phytopathology research. 3: 117-124.
3. Takahashi Y, Nakashima T. Actinomycetes, an Inexhaustible Source of Naturally Occurring Antibiotics. Antibiotics. 2018; 7(2):45. https://doi.org/10.3390/antibiotics7020045
4. Egorov, A. M., Ulyashova, M. M., & Rubtsova, M. Y. (2018). Bacterial Enzymes and Antibiotic Resistance. Actanaturae, 10(4), 33–48.
5. Ameryckx A, Thabault L, Pochet L, Leimanis S, Poupaert JH, Wouters J, Joris B, Van Bambeke F, Frédérick R. 1-(2-Hydroxybenzoyl)-thiosemicarbazides are promising antimicrobial agents targeting d alanine-d-alanine ligase in bacterio. Eur J Med Chem. 2018 Nov 5;159:324-338. doi: 10.1016/j.ejmech.2018.09.067. Epub 2018 Sep 28. PMID: 30300845.
6. Rai, M., Pandit, R., Gaikwad, S., & Kövics, G. (2016). Antimicrobial peptides as natural biopreservative to enhance the shelf-life of food. Journal of food science and technology, 53(9), 3381–3394. https://doi.org/10.1007/s13197-016-2318-5
7. Singh V. P. (2018). Recent approaches in food bio-preservation – a review. Open veterinary journal, 8(1), 104–111. https://doi.org/10.4314 /ovj.v8i1.16
8. Booth, I.R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49: 359-378.
9. Poolman, B., Driessen, A.J.M., and Konings, W.N. 1987. Regulation of solute transport in streptococci by external and internal pH values. Microbiological Reviews. 51: 498-508.
10. Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Membrane Proteins. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26878/
11. Davidson, P.M., and Branen, A.L. 1981. Antimicrobial activity of non-halogenated phenolic compounds. J. Food Prot. 44: 623-632.
12. L. De León , L. Moujir. Activity and mechanism of the action of zeylasterone against Bacillus subtilis. Journal of Applied Microbiology, Volume 104, Issue 5May 2008, Pages 1266-1274
13. Liu, D., Ragothama, K.G., Hasegawa, P.M., and Bressan, R.A. 1988. Osmotin over expression in potato delays development of disease symptoms. Proc. Natl. Acad. Sci. USA. 91: 1888.
14. Jingyi Liu, Changling Du, Henry T. Beaman and Mary Beth B. Monroe Characterization of Phenolic Acid Antimicrobial and Antioxidant Structure–Property Relationships. Pharmaceutics 2020, 12, 419; doi:10.3390/pharmaceutics12050419
15. Hugo, W.B., and Bloomfield, S.F. 1971a. Studies on the mode of action of the phenolic antibacterial agent fentichlor against Staphylococcus aureusand Escherichia coli. II. The effects of fentichlor on the bacterial membrane and the cytoplasmic constituents of the cell. J. Appl. Bacteriol. 34(3):569-578.
16. Hugo, W.B., and Bloomfield, S.F. 1971b. Studies on the mode of action of the phenolic antibacterial agent fentichlor against Staphylococcus aureusand Escherichia coli. III. The effect of fentichlor on the metabolic activities of Staphylococcus aureusand Escherichia coli. J. Appl. Bacteriol. 34(3): 579-591.
17. Paul Lee, Joyce D. Linderman, Sheila Smith, Robert J. Brychta, Juan Wang, Christopher Idelson, Rachel M. Perron, Charlotte D. Werner, Giao Q. Phan, Udai S. Kammula, Electron Kebebew, Karel Pacak, Kong Y. Chen, Francesco S. Celi, Irisin and FGF21 Are Cold-Induced Endocrine Activators of Brown Fat Function in Humans, Cell Metabolism, Volume 19, Issue 2, 2014, Pages 302-309, ISSN 1550-4131
18. Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial Activity of Some Essential Oils- Present Status and Future Perspectives. Medicines (Basel, Switzerland), 4(3), 58. https://doi.org/10.3390/medicines4030058
19. Salmond, C.V., Kroll, R.G., and Booth, I.R. 1984. The effect of food preservatives on pH homeostasis in Escherichia coli. J. Gen. Microbiol. 130:2845-2850.
20. Knobloch, K., Pauli, A., Iberl, B., Weis, N., and Weigand, H. 1988. Antibacterial activity and antifungal properties of essential oil components. Journal of Essential oils Research.1:119-128.
21. Bruno C. Marreiros, Filipa Calisto, Paulo J. Castro, Afonso M. Duarte, Filipa V. Sena, Andreia F. Silva, Filipe M. Sousa, Miguel Teixeira, Patrícia N. Refojo, Manuela M. Pereira, Exploring membrane respiratory chains, Biochimica et Biophysica Acta (BBA) – ioenergetics, Volume 1857, Issue 8, 2016, Pages 1039-1067, ISSN 0005-2728.
22. Han, Y., Sun, Z., & Chen, W. (2019). Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene against Listeria monocytogenes. Molecules (Basel, Switzerland), 25(1), 33. https://doi.org/10.3390/molecules25010033.
23. Ultee, Annemieke & Wells-Bennik, Marjon & Moezelaar, Roy. (2002). The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus cereus.
Applied and environmental microbiology. 68. 1561-8. 10.1128/AEM.68.4.1561-1568.2002.
24. Cristani, Mariateresa & D’Arrigo, Manuela & Mandalari, Giuseppina & Castelli, Francesco & Sarpietro, mariagrazia & Micieli, Dorotea & Venuti, Vincenza & Bisignano, Giuseppe & Saija, Antonella & Trombetta, Domenico. (2007). Interaction of Four Monoterpenes Contained in Essential Oils with Model Membranes: Implications for Their Antibacterial Activity. Journal of agricultural and food chemistry. 55. 6300-8. 10.1021/jf070094x.
25. Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel, Switzerland), 6 (12), 1451–1474. https://doi.org/10.3390 /ph6121451
26. Sikkema, J., de Bont, J.A.M., and Poolman, B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews. 59:201-222.
27. Cox, S.D., Mann, C.M., Markham, J.L., Bell, H.C., Gustafson, J.E., Warmington, J.R., and Wyllie, S.G. 2000. The mode of antimicrobial action of the essential oil of Melaleucaalternifolia (Tea tree oil). Journal of Applied Microbiology. 88: 170-175.
28. Zeinab Breijyeh, Buthaina Jubeh and Rafik Karaman Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340; doi:10.3390/molecules25061340.
29. Heipieper, H.J., Diefenbach, R., and Keweloh, H. 1992. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putidaP8 from substrate toxicity. Appl. Environ. Microbiol. 58: 1847- 1852.
30. Naga Parameswari Mangalagiri, Shravan Kumar Panditi, Naveena Lavanya Latha Jeevigunta. Antimicrobial activity of essential plant oils and their major components, Heliyon, Volume 7, Issue 4, 2021, e06835, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2021.e06835.
31. Yanping Wu, JinrongBai, Kai Zhong, Yina Huang, Huayi Qi, Yan Jiang and Hong Gao Antibacterial Activity and Membrane-Disruptive Mechanism of 3-p-trans-Coumaroyl-2- hydroxyquinic Acid, a Novel Phenolic Compound from Pine Needles of Cedrusdeodara, against Staphylococcus aureus Molecules 2016, 21, 1084; doi:10.3390/molecules21081084.
32. Lopez Romero, Julio & Ríos, Humberto& Borges, Anabela & Simões, Manuel. (2015). Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evidence-based Complementary and Alternative Medicine. 2015. 10.1155/2015/795435.
33. Carson, C.F., Mee, B.J., and Riley, T.V. 2002. Mechanism of action of Melaleucaalternifolia (Tea tree oil) on Staphylococcus aureus determined by time-kill, lysis leakage and salt tolerance assays and Electron Microscopy. Antimicrob. Agent Chemothe. 46: 1914-1920.
34. Tagousop, C.N., Tamokou, JdD., Ekom, S.E. et al. Antimicrobial activities of flavonoid glycosides from Graptophyllumgrandulosum and their mechanism of antibacterial action. BMC Complement Altern Med 18, 252 (2018). https://doi.org/10.1186/s12906-018-2321-7.
35. Shabana Bowsiya, Dr. Naveen Kumar Antibacterial Activity of Tea Tree Oil against Clinical Isolates of Staphylococcus aureus Int. J. Pharm. Sci. Rev. Res., 60(2), January – February 2020; Article No. 17, Pages: 102-106.
36. Uribe, S., Ramorez, J., and Pena, A. 1985. Effects of β -pinene on yeast membrane functions. J. Bacteriol. 161: 1195-1200.
37. Perumal, S., Mahmud, R., & Ismail, S. (2017). Mechanism of Action of Isolated Caffeic Acid and Epicatechin 3-gallate from Euphorbia hirta against Pseudomonas aeruginosa. Pharmacognosy magazine, 13 (Suppl 2), S311–S315. https://doi.org/10.4103 /pm.pm_309_15.
38. Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules (Basel, Switzerland), 25(6), 1340. https://doi.org/10.3390/molecules25061340.
39. Mercedes Verdeguer, Adela M. Sánchez-Moreiras and Fabrizio Araniti. Phytotoxic Eects and Mechanism of Action of Essential Oils and Terpenoids. Plants 2020, 9, 1571; doi:10.3390/plants9111571.
40. Othman Leen, Sleiman Ahmad, Abdel-Massih Roula M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Frontiers in Microbiology, 10, 2019, 911 DOI=10.3389/fmicb.2019.00911 ISSN=1664-302X.

n[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

n


n[if 1114 equals=”Yes”]n

n[/if 1114]”},{“box”:2,”content”:”

Regular Issue Open Access Article

n

n

n

n

n

Research & Reviews : Journal of Botany

n

[if 344 not_equal=””]ISSN: 2278-2222[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 10
Issue 3
Received September 16, 2021
Accepted October 29, 2021
Published November 29, 2021

n

n

n

n

Editor

n

n


n

Reviewer

n

n


n n

n”},{“box”:6,”content”:”“}]

Read More
RRJoB

A Review on Manihot Esculenta Species

[{“box”:0,”content”:”

n

n

 > 

n

n

 > 

n

n

n

n

n

n

n

By [foreach 286]u00a0

u00a0Lavi Jain, Kaustubh Tripathi, Surya Prakash DV,

[/foreach]
nJanuary 10, 2023 at 6:46 am

n

nAbstract

n

Manihot esculenta, which is commonly known as Cassava, is a woody shrub that provides a high source of carbohydrate. It is an annual crop native to tropical and subtropical regions of the world. Nigeria is the largest producer of the cassava plant. The parts of the plant like leaves, roots, stems, etc are consumed in a variety of ways as they have been shown to possess activities like analgesic, anti-inflammatory anti-helmentic, anti-diabetic, antipyretic, hepatoprotective, relaxing, antimutagenic, and anti-cancer. Calories, proteins, fats, carbohydrates, phosphorus, iron, vitamin B, vitamin C, and starch are among the nutrients found in the plant. The leaves contain vitamin A, vitamin B1, calcium, iron, phosphorus, fat, starch, calories, and proteins. The stem also consists ofenzymes,calcium oxalate, tannins and peroxidase. The cassava plant is also rich in saponin, flavonoid, alkaloids, and other phytochemicals. In many regions of the world, it is widely considered a medicinal plant. The extracts of leaves show a promising antidiarrheal activity. It is also used for the treatment of many infectious diseases. The roots of cassava are eaten raw, boiled, and even used as an alternative to wheat flour in the processes of baking. The pesticidal activity of Manihot esculenta has also been determined and the results suggested that the plant also has pesticidal activity. The leaves act as a natural remedy and the extract helps in skincare and healing. It is also an excellent wound healing remedy as it contributes to wound repair, cell replacement, bone health, memory enhancement, and the body’s metabolic function.

n

n

n

n

Volume :u00a0u00a010 | Issue :u00a0u00a02 | Received :u00a0u00a0June 8, 2021 | Accepted :u00a0u00a0July 29, 2021 | Published :u00a0u00a0August 20, 2021n[if 424 equals=”Regular Issue”][This article belongs to Research & Reviews : Journal of Botany(rrjob)] [/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue A Review on Manihot Esculenta Species under section in Research & Reviews : Journal of Botany(rrjob)] [/if 424]
Keywords Manihot esculenta, saponin, flavonoid, antioxidant, anticancer

n

n

n

n

n


n[if 992 equals=”Transformative”]

n

n

Full Text

n

n

n

[/if 992][if 992 not_equal=”Transformative”]

n

n

Full Text

n

n

n

[/if 992] n


nn

[if 379 not_equal=””]n

[foreach 379]n

n[/foreach]

n[/if 379]

n

References

n[if 1104 equals=””]n

1 Thambi, Mity, and Tom Cherian. Pesticidal activity of the leaves of Manihot esculenta against the pest Sitophilus oryzae. The Pharma Innovation, Part A. 2015; 4(6): 15-18p.
2 Suresh, R., M. Saravanakumar, and P. Suganyadevi. Anthocyanins from Indian cassava (Manihot esculenta Crantz) and its antioxidant properties. International Journal of Pharmaceutical Sciences and Research. 2011; 2(7): 1819-1828p.
3 Abdelsamed I. Elshamy, Abd El-Nasser G. El Gendy, Abdel Razik H. Farrag, Jihan Hussein, Nadia A. Mohamed, Walaa A. El-Kashak, Simona Nardoni, Francesca Mancianti, Marinella De
Leo & Luisa Pistelli. Shoot aqueous extract of Manihot esculenta Crantz (cassava) acts as a protective agent against paracetamol-induced liver injury. Natural product research. 2020: 1-5p.
4 Miladiyah, Isnatin. Analgesic activity of ethanolic extract of Manihot esculenta Crantz leaves in mice. Universamedicina. 2011; 30(1): 3-10p.
5 Ehiobu, John M., and Gideon I. Ogu. Phytochemical content and in vitro antimycelial efficacy of Colocasia esculenta (L), Manihot esculenta (Crantz) and Dioscorearotundata (Poir) Leaf Extracts on Aspergillus niger and Botryodiplodiatheobromae. Journal of Horticulture and Plant Research. 2018; 9-18p.
6 Thiyagarajan, M., and M. Suriyavathana. Phytochemical and antimicrobial screening of ManihotesculantaCrantz varieties Mulluvadi I, CO3 root bark. International Journal of Biotechnology and Biochemistry. 2010; 6(6): 859-864p.
7 Amaza, I. B. Determination of proximate composition, amino acids, minerals and phytochemical profile of Cassava (Manihot esculenta) peel from sweet cassava variety grown in YobeState of North Eastern Nigeria. Nigerian Journal of Animal Production. 2021; 48(1): 124-134p.
8 Olsen, Kenneth M., and Barbara A. Schaal. Evidence on the origin of cassava: phylogeography of Manihotesculenta. Proceedings of the National Academy of Sciences. 1999; 96(10): 5586-5591p.
9 Abuh, Amodu, Reuben Agada, and DluyaThagariki. Effect of Manihot esculenta and Manihotutilissima Cyanide Extract on Some Biochemical Parameters of Albino Rats. Asian Journal of Research in Biochemistry. 2020; 13-28p.
10 Isaac-Bamgboye, F. J., Enujiugha, V. N., &Oluwamukomi, M. O. In-vitro Antioxidant Capacity, Phytochemical Characterisation, Toxic and Functional Properties of African Yam Bean (Sphenostylisstenocarpa) Seed-Enriched Cassava (Manihot esculenta) Product (Pupuru). European Journal of Nutrition & Food Safety. 2020; 12(3): 84-98p.
11 Bahekar, Satish E., and Ranjana S. Kale. Antidiarrheal activity of ethanolic extract of Manihot esculenta Crantz leaves in Wistar rats. Journal of Ayurveda and integrative medicine. 2015; 6(1): 35-40p.
12 VajjiramChinnadurai, Periannan Viswanathan, KandasamyKalimuthu, AmmasaiVanitha, Venkatachalam Ranjitha, ArivalaganPugazhendhi. Comparative studies of phytochemical analysis and pharmacological activities of wild and micropropagated plant ethanol extracts of Manihot esculenta. Biocatalysis and Agricultural Biotechnology. 2019; 19: 101166.
13 Nadjiam, Djirabaye, Nicolas CyrilleAyessou, and AliouGuissé. Physicochemical Characterization of Nine Cassava (Manihot esculenta Crantz) Cultivars from Chad. Food and Nutrition Sciences. 2020; 11(7): 741-756p.
14 Esther Ekeledo, Sajid Latif, Adebayo Abass, Joachim Müller.Antioxidant potential of extracts from peels and stems of yellow‐fleshed and white cassava varieties. International Journal of Food Science & Technology.2021; 56(3): 1333-1342p.
15 Salvador, E. M., Vanessa Steenkamp, and Cheryl Myra EthelwynMcCrindle. Production, consumption and nutritional value of cassava (Manihot esculenta, Crantz) in Mozambique: An overview. 2014; 6(3): 29-38p.
16 Okeke CU, Iweala E. Antioxidant profile of Dioscorea Rotundata, Manihot Esculenta, Ipoemea Batatas, Vernonia Amygdalina and Aloe Vera. J Med Res Technol 2007;4:4-10p.
17 Jayasri P, Narendra Naik D, A. Elumalai. Evaluation of anthelmintic activity of Manihot esculenta leaves. Int J Curr Pharm Res 2011;3(4):115-16p.
18 Zakaria ZA. The in vitro antibacterial activity and brine shrimp toxicity of Manihot esculenta var. Sri Pontian (Euphorbiacea) extracts. Int. J. Pharmacol 2006;2(2):216-20p.

nn[/if 1104] [if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””], [/if 1106]
  2. n[/foreach]

n[/if 1104]

n[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=”Regular Issue”] Regular Issue[/if 424] Open Access Article

n

Editors Overview

rrjob maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

n

“},{“box”:4,”content”:”

n“},{“box”:1,”content”:”

    By  [foreach 286]n

  1. n

    Lavi Jain, Kaustubh Tripathi, Surya Prakash DV

    n

  2. [/foreach]

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. B.Tech Student, B.Tech Student, Assistant Professor,Department of Biotechnology, Meerut Institute of Engineering and Technology (MIET), Meerut, Department of Biotechnology, Meerut Institute of Engineering and Technology (MIET), Meerut, Department of Biotechnology, Meerut Institute of Engineering and Technology (MIET), Meerut,Uttar Pradesh, Uttar Pradesh, Uttar Pradesh,India, India, India
  2. n[/if 1175][/foreach]

n

n

n

n

n

Abstract

nManihot esculenta, which is commonly known as Cassava, is a woody shrub that provides a high source of carbohydrate. It is an annual crop native to tropical and subtropical regions of the world. Nigeria is the largest producer of the cassava plant. The parts of the plant like leaves, roots, stems, etc are consumed in a variety of ways as they have been shown to possess activities like analgesic, anti-inflammatory anti-helmentic, anti-diabetic, antipyretic, hepatoprotective, relaxing, antimutagenic, and anti-cancer. Calories, proteins, fats, carbohydrates, phosphorus, iron, vitamin B, vitamin C, and starch are among the nutrients found in the plant. The leaves contain vitamin A, vitamin B1, calcium, iron, phosphorus, fat, starch, calories, and proteins. The stem also consists ofenzymes,calcium oxalate, tannins and peroxidase. The cassava plant is also rich in saponin, flavonoid, alkaloids, and other phytochemicals. In many regions of the world, it is widely considered a medicinal plant. The extracts of leaves show a promising antidiarrheal activity. It is also used for the treatment of many infectious diseases. The roots of cassava are eaten raw, boiled, and even used as an alternative to wheat flour in the processes of baking. The pesticidal activity of Manihot esculenta has also been determined and the results suggested that the plant also has pesticidal activity. The leaves act as a natural remedy and the extract helps in skincare and healing. It is also an excellent wound healing remedy as it contributes to wound repair, cell replacement, bone health, memory enhancement, and the body’s metabolic function.n

n

n

Keywords: Manihot esculenta, saponin, flavonoid, antioxidant, anticancer

n[if 424 equals=”Regular Issue”][This article belongs to Research & Reviews : Journal of Botany(rrjob)]

n[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Research & Reviews : Journal of Botany(rrjob)] [/if 424]

n

n

n


n[if 992 equals=”Subscription”]n

n

n

Full Text

n

n

nn[/if 992]n[if 992 not_equal=”Subscription”]n

n

Full Text

n

n

n

n


[/if 992]n[if 379 not_equal=””]

Browse Figures

n

n

[foreach 379]n

n[/foreach]

n

[/if 379]n

n

References

n[if 1104 equals=””]

1 Thambi, Mity, and Tom Cherian. Pesticidal activity of the leaves of Manihot esculenta against the pest Sitophilus oryzae. The Pharma Innovation, Part A. 2015; 4(6): 15-18p.
2 Suresh, R., M. Saravanakumar, and P. Suganyadevi. Anthocyanins from Indian cassava (Manihot esculenta Crantz) and its antioxidant properties. International Journal of Pharmaceutical Sciences and Research. 2011; 2(7): 1819-1828p.
3 Abdelsamed I. Elshamy, Abd El-Nasser G. El Gendy, Abdel Razik H. Farrag, Jihan Hussein, Nadia A. Mohamed, Walaa A. El-Kashak, Simona Nardoni, Francesca Mancianti, Marinella De
Leo & Luisa Pistelli. Shoot aqueous extract of Manihot esculenta Crantz (cassava) acts as a protective agent against paracetamol-induced liver injury. Natural product research. 2020: 1-5p.
4 Miladiyah, Isnatin. Analgesic activity of ethanolic extract of Manihot esculenta Crantz leaves in mice. Universamedicina. 2011; 30(1): 3-10p.
5 Ehiobu, John M., and Gideon I. Ogu. Phytochemical content and in vitro antimycelial efficacy of Colocasia esculenta (L), Manihot esculenta (Crantz) and Dioscorearotundata (Poir) Leaf Extracts on Aspergillus niger and Botryodiplodiatheobromae. Journal of Horticulture and Plant Research. 2018; 9-18p.
6 Thiyagarajan, M., and M. Suriyavathana. Phytochemical and antimicrobial screening of ManihotesculantaCrantz varieties Mulluvadi I, CO3 root bark. International Journal of Biotechnology and Biochemistry. 2010; 6(6): 859-864p.
7 Amaza, I. B. Determination of proximate composition, amino acids, minerals and phytochemical profile of Cassava (Manihot esculenta) peel from sweet cassava variety grown in YobeState of North Eastern Nigeria. Nigerian Journal of Animal Production. 2021; 48(1): 124-134p.
8 Olsen, Kenneth M., and Barbara A. Schaal. Evidence on the origin of cassava: phylogeography of Manihotesculenta. Proceedings of the National Academy of Sciences. 1999; 96(10): 5586-5591p.
9 Abuh, Amodu, Reuben Agada, and DluyaThagariki. Effect of Manihot esculenta and Manihotutilissima Cyanide Extract on Some Biochemical Parameters of Albino Rats. Asian Journal of Research in Biochemistry. 2020; 13-28p.
10 Isaac-Bamgboye, F. J., Enujiugha, V. N., &Oluwamukomi, M. O. In-vitro Antioxidant Capacity, Phytochemical Characterisation, Toxic and Functional Properties of African Yam Bean (Sphenostylisstenocarpa) Seed-Enriched Cassava (Manihot esculenta) Product (Pupuru). European Journal of Nutrition & Food Safety. 2020; 12(3): 84-98p.
11 Bahekar, Satish E., and Ranjana S. Kale. Antidiarrheal activity of ethanolic extract of Manihot esculenta Crantz leaves in Wistar rats. Journal of Ayurveda and integrative medicine. 2015; 6(1): 35-40p.
12 VajjiramChinnadurai, Periannan Viswanathan, KandasamyKalimuthu, AmmasaiVanitha, Venkatachalam Ranjitha, ArivalaganPugazhendhi. Comparative studies of phytochemical analysis and pharmacological activities of wild and micropropagated plant ethanol extracts of Manihot esculenta. Biocatalysis and Agricultural Biotechnology. 2019; 19: 101166.
13 Nadjiam, Djirabaye, Nicolas CyrilleAyessou, and AliouGuissé. Physicochemical Characterization of Nine Cassava (Manihot esculenta Crantz) Cultivars from Chad. Food and Nutrition Sciences. 2020; 11(7): 741-756p.
14 Esther Ekeledo, Sajid Latif, Adebayo Abass, Joachim Müller.Antioxidant potential of extracts from peels and stems of yellow‐fleshed and white cassava varieties. International Journal of Food Science & Technology.2021; 56(3): 1333-1342p.
15 Salvador, E. M., Vanessa Steenkamp, and Cheryl Myra EthelwynMcCrindle. Production, consumption and nutritional value of cassava (Manihot esculenta, Crantz) in Mozambique: An overview. 2014; 6(3): 29-38p.
16 Okeke CU, Iweala E. Antioxidant profile of Dioscorea Rotundata, Manihot Esculenta, Ipoemea Batatas, Vernonia Amygdalina and Aloe Vera. J Med Res Technol 2007;4:4-10p.
17 Jayasri P, Narendra Naik D, A. Elumalai. Evaluation of anthelmintic activity of Manihot esculenta leaves. Int J Curr Pharm Res 2011;3(4):115-16p.
18 Zakaria ZA. The in vitro antibacterial activity and brine shrimp toxicity of Manihot esculenta var. Sri Pontian (Euphorbiacea) extracts. Int. J. Pharmacol 2006;2(2):216-20p.

n[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

n


n[if 1114 equals=”Yes”]n

n[/if 1114]”},{“box”:2,”content”:”

Regular Issue Open Access Article

n

n

n

n

n

Research & Reviews : Journal of Botany

n

[if 344 not_equal=””]ISSN: 2278-2222[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 10
Issue 2
Received June 8, 2021
Accepted July 29, 2021
Published August 20, 2021

n

n

n

n

Editor

n

n


n

Reviewer

n

n


n n

n”},{“box”:6,”content”:”“}]

Read More
RRJoB

Synthesis of Brassinosteroid with Signaling and Response to Abiotic Stress: Review

[{“box”:0,”content”:”

n

n

 > 

n

n

 > 

n

n

n

n

n

n

n

By [foreach 286]u00a0

u00a0Vipul G. Baldaniya, Ajay V. Narwade, Sagar K. Jadav,

[/foreach]
nJanuary 10, 2023 at 6:34 am

n

nAbstract

n

Brassinosteroids (BRs) are a group of plant steroid hormones with multiple roles in plant growth, development, and responses to stresses and signaling functions to promote cell expansion and cell division and plays a role in etiolation and reproduction. The entire synthetic pathway of sterol biosynthesis is brassinolide (BL) from the general campesterol synthesis pathway in Arabidopsis. Campesterol converts to BL in two different ways campesterol dependent or campesterol independent pathway. BRs are perceived by a plasma membrane-localized receptor and co-receptor complex including BRI1 and BAK1. The activated BRI1/BAK1 complex inactivates BIN2, which is one of the GSK3-like protein kinases and negatively regulates BR signaling, to promote the activity of two critical transcription factors, BES1 and BZR1 and BR responsive gene expression. In plants, BR deficiencies impair vital physiological processes and cause phenotypic abnormalities. A large number of studies show that BRs can positively influence plant responses to abiotic stresses such as heat, cold, drought, salinity, pesticides, and heavy metals.

n

n

n

n

Volume :u00a0u00a010 | Issue :u00a0u00a03 | Received :u00a0u00a0September 19, 2021 | Accepted :u00a0u00a0October 27, 2021 | Published :u00a0u00a0November 29, 2021n[if 424 equals=”Regular Issue”][This article belongs to Research & Reviews : Journal of Botany(rrjob)] [/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue Synthesis of Brassinosteroid with Signaling and Response to Abiotic Stress: Review under section in Research & Reviews : Journal of Botany(rrjob)] [/if 424]
Keywords Hormone, Brassinolide, Synthesis, Signalling, Stress

n

n

n

n

n


n[if 992 equals=”Transformative”]

n

n

Full Text

n

n

n

[/if 992][if 992 not_equal=”Transformative”]

n

n

Full Text

n

n

n

[/if 992] n


nn

[if 379 not_equal=””]n

[foreach 379]n

n[/foreach]

n[/if 379]

n

References

n[if 1104 equals=””]n

1. Yokota, T., Ohnishi, T., Shibata, K., Asahina, M., Nomura, T., Fujita, T., Ishizaki, K. and Kohchi, T. Phytochemistry. Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern. 2017; 136: 46-55.
2. Anwar, A., Liu, Y., Dong, R., Bai, L., Yu, X. and Li, Y., Biological research. The physiological and molecular mechanism of brassinosteroid in response to stress: a review. 2018; 51:46.
3. Mitchell, J. W., Mandava, N., Worley, J. F., Plimmer, J. R. and Smith, M. V., Nature. Brassins- a new family of plant hormones from rape pollen. 1970; 225:1065–1066.
4. Oh, E., Zhu, J. Y. and Wang, Z. Y., Nat Cell Biol. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. 2012; 14:802–9.
5. Nolan, T., Vukasinovic, N., Liu, D., Russinova, E. and Yin, Y., Plant Cell. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. 2019; https ://doi.org/10.1105/tpc.19.00335.
6. Wang, H., Wei, Z., Li, J. and Wang X., Brassinosteroids. Hormone Metabolism and Signaling in Plants. 2017; 291-326.
7. Pose, D., Castanedo, I., Borsani, O., Nieto, B., Rosado, A., Taconnat, L., Ferrer, A., Dolan, L., Valpuesta, V. and Botella M. A.; Plant J.; Identification of the Arabidopsis dry2/sqe1-5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. 2009; 59:63-76.
8. Diener, A. C., Li, H., Zhou, W., Whoriskey, W. J., Nes, W. D. and Fink, G. R.; Plant Cell.; Sterol methyltransferase 1 controls the level of cholesterol in plants. 2000; 12:853-870.
9. Choe, S., Dilkes, B. P., Gregory, B. D., Ross, A. S., Yuan, H., Noguchi, T., Fujika, S., Takatsuto, S., Tanaka, A., Yoshida, S., Tax, F. E. and Feldmann K. A. Plant Physiol.; The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. 1999; 119:897-907.
10. Klahre, U., Noguchi, T., Fujioka, S., Takatsuto, S., Yokota T., Nomura T., Yoshida, S. and Chua, N. H.; Plant Cell.; The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. 1998; 10:1677-1690.
11. Oh, M., Honey, S. H. and Tax, F. E.; Int. J. Mol. Sci.; The control of cell expansion, cell division, and vascular development by brassinosteroids: a historical perspective. 2020; 21:1743.
12. Hothorn, M., Belkhadir, Y., Dreux, M., Dabi, T., Noel, J. P., Wilson, I. A. and Chory, J.; Nature.; Structural basis of steroid hormone perception by the receptor kinase BRI1. 2011; 474:467-471.
13. Hwang, H., Ryu, H. and Cho, H. Brassinosteroid signaling pathways interplaying with diverse signaling cues for crop enhancement. 2021; 11:556.
14. Zhu, J., Sae-seaw, J. and Wang, Z.; Development at glance.; Brassinosteroid signalling. 2013; 140:1615-1620.
15. Gampala, S., Kim, T., He, J., Tang, W., Deng, Z., Bai, M., Guan, S., Lalonde, S., Sun, Y. and Gendron, J.; Dev. Cell.; An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. 2007; 13:177-189.
16. Ryu, H., Kim, K. Cho, H. Park, J. Choe, S. and Hwang, I.; Plant Cell.; Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. 2007; 19:2749-2762.
17. Kim, E. and Russinova, E.; Current Biology.; Brassinosteroid signalling. 2020; 30: R287-R301.
18. Rajewska, I., Talarek, M. and Bajguz, A.; Front Plant Sci.; Brassinosteroids and response of plants to heavy metals action. 2016; 7:629.
19. Xia, X. J., Fang, P. P., Guo, X., Qian, X. J., Zhou, J., Shi, K., Zhou, Y. H. and Yu, J. Q.; Plant Cell Environ.; Brassinosteroid-mediated apoplastic H2O2-glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato. 2018; 41(5):1052- 1064.
20. Wang, B., Li, Y. and Zhang, W. H.; Ann Bot.; Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency. 2012; 110(3):681-688.
21. Ahammed, G. J., Li, X., Liu, A. and Chen, S.; journal of plant growth regulation; Brassinosteroids in plant tolerance to abiotic stress. 2020.
22. Amraee, L., Rahmani, F. and Abdollahi, B. M.; Plant Physiol Biochem; 24-Epibrassinolide alters DNA cytosine methylation of Linum usitatissimum L. under salinity stress. 2019; 139:478-484.
23. Yin, W., Dong, N., Niu, M., Zhang, X., Li, L., Liu, J., Liu, B. and Tong, H.; Crop J.; Brassinosteroid-regulated plant growth and development and gene expression in soybean. 2019; 7(3):411-418.
24. Tanveer, M., Shahzad, B., Sharma A. and Khan, E. A.; Plant Physiology and Biochemistry; 24- Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. 2019; 135: 295-303.
25. Lone, W. A., Majeed, N., Yaqoob, U. and John, R.; Plant cell reports; Exogenous brassinosteroid and jasmonic acid improve drought tolerance in Brassica rapa L. genotypes by modulating osmolytes, antioxidants and photosynthetic system. 2021; https://doi.org/10.1007/s00299-021- 02763-9.
26. Khan, I., Awan, S. A., Ikram, R., Rizwan, M., Akhtar, N., Yasmin, H., Sayyed, R. Z., Ali, S. and Ilyas, N.; Physiologia Plantarum; Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress. 2020; 172:696-706.
27. Gill, M. B., Call, K., Zhang, G. and Zeng, F.; Plant growth regul.; Brassinolide alleviates the drought- induced adverse effects in barley by modulation of enzymatic antioxidants and ultrastructure. 2017; 82:447-455.
28. Bita, C. E. and Gerats, T.; Front. Plant Sci.; Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. 2013; 4:273.
29. Martinez, C., Espinosa-Ruiz, A., Lucas, M., Bernardo-Garcia, S., Franco-Zorrilla, J. M. and Prat, S.; EMBO J.; PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. 2018; 37:99552.
30. Martins, S., Jorda, A., Cayrel, A., Huguet, S., Roux, C. P. L., Ljung, K. and Vert, G.; Nat. Commun.; Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. 2017; 8:309.
31. Sadura, I. and Janeczko, A.; Biol Plant; Physiological and molecular mechanisms of brassinosteroid-induced tolerance to high and low temperature in plants. 2018; 62(4):601-616.
32. Zhang, Y., Liang, Y., Zhao, X., Jin, X., Hou, L., Shi, Y. and Ahammed, G. J.; Agronomy; Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. 2019; 9(11):733.
33. Zhao, M., Yuan, L., Wang, J., Xie, S., Zheng, Y., Nie, L., Zhu, S., Hou, J., Chen, G. and Wang, C.; BMC Genomics; Transcriptome analysis reveals a positive effect of brassinosteroids on the photosynthetic capacity of wucai under low temperature. 2019; 20(1):810.
34. Yue, J., You, Y., Zhang, L., Fu, Z., Wang, J., Zhang, J. and Guy, R. D.; J Plant Growth Regul.; Exogenous 24-epibrassinolide alleviates effects of salt stress on chloroplasts and photosynthesis in Robinia pseudoacacia L. seedlings. 2018; 38(2):669-682.
35. Singh, S. and Prasad, S. M.; Plant Growth Regul.; Effects of 28-homobrassinoloid on key physiological attributes of Solanum lycopersicum seedlings.

nn[/if 1104] [if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””], [/if 1106]
  2. n[/foreach]

n[/if 1104]

n[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=”Regular Issue”] Regular Issue[/if 424] Open Access Article

n

Editors Overview

rrjob maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

n

“},{“box”:4,”content”:”

n“},{“box”:1,”content”:”

    By  [foreach 286]n

  1. n

    Vipul G. Baldaniya, Ajay V. Narwade, Sagar K. Jadav

    n

  2. [/foreach]

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Ph.D. Scholar, Associate Professor, Assistant Professor,Department of plant physiology, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Department of Plant Physiology, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Department of Genetics and Plant Breeding, College of Agriculture Waghai, Navsari Agricultural University, Navsari,Gujarat, Gujarat, Gujarat,India, India, India
  2. n[/if 1175][/foreach]

n

n

n

n

n

Abstract

nBrassinosteroids (BRs) are a group of plant steroid hormones with multiple roles in plant growth, development, and responses to stresses and signaling functions to promote cell expansion and cell division and plays a role in etiolation and reproduction. The entire synthetic pathway of sterol biosynthesis is brassinolide (BL) from the general campesterol synthesis pathway in Arabidopsis. Campesterol converts to BL in two different ways campesterol dependent or campesterol independent pathway. BRs are perceived by a plasma membrane-localized receptor and co-receptor complex including BRI1 and BAK1. The activated BRI1/BAK1 complex inactivates BIN2, which is one of the GSK3-like protein kinases and negatively regulates BR signaling, to promote the activity of two critical transcription factors, BES1 and BZR1 and BR responsive gene expression. In plants, BR deficiencies impair vital physiological processes and cause phenotypic abnormalities. A large number of studies show that BRs can positively influence plant responses to abiotic stresses such as heat, cold, drought, salinity, pesticides, and heavy metals.n

n

n

Keywords: Hormone, Brassinolide, Synthesis, Signalling, Stress

n[if 424 equals=”Regular Issue”][This article belongs to Research & Reviews : Journal of Botany(rrjob)]

n[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Research & Reviews : Journal of Botany(rrjob)] [/if 424]

n

n

n


n[if 992 equals=”Transformative”]n

n

n

Full Text

n

n

nn[/if 992]n[if 992 not_equal=”Transformative”]n

n

Full Text

n

n

n

n


[/if 992]n[if 379 not_equal=””]

Browse Figures

n

n

[foreach 379]n

n[/foreach]

n

[/if 379]n

n

References

n[if 1104 equals=””]

1. Yokota, T., Ohnishi, T., Shibata, K., Asahina, M., Nomura, T., Fujita, T., Ishizaki, K. and Kohchi, T. Phytochemistry. Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern. 2017; 136: 46-55.
2. Anwar, A., Liu, Y., Dong, R., Bai, L., Yu, X. and Li, Y., Biological research. The physiological and molecular mechanism of brassinosteroid in response to stress: a review. 2018; 51:46.
3. Mitchell, J. W., Mandava, N., Worley, J. F., Plimmer, J. R. and Smith, M. V., Nature. Brassins- a new family of plant hormones from rape pollen. 1970; 225:1065–1066.
4. Oh, E., Zhu, J. Y. and Wang, Z. Y., Nat Cell Biol. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. 2012; 14:802–9.
5. Nolan, T., Vukasinovic, N., Liu, D., Russinova, E. and Yin, Y., Plant Cell. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. 2019; https ://doi.org/10.1105/tpc.19.00335.
6. Wang, H., Wei, Z., Li, J. and Wang X., Brassinosteroids. Hormone Metabolism and Signaling in Plants. 2017; 291-326.
7. Pose, D., Castanedo, I., Borsani, O., Nieto, B., Rosado, A., Taconnat, L., Ferrer, A., Dolan, L., Valpuesta, V. and Botella M. A.; Plant J.; Identification of the Arabidopsis dry2/sqe1-5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. 2009; 59:63-76.
8. Diener, A. C., Li, H., Zhou, W., Whoriskey, W. J., Nes, W. D. and Fink, G. R.; Plant Cell.; Sterol methyltransferase 1 controls the level of cholesterol in plants. 2000; 12:853-870.
9. Choe, S., Dilkes, B. P., Gregory, B. D., Ross, A. S., Yuan, H., Noguchi, T., Fujika, S., Takatsuto, S., Tanaka, A., Yoshida, S., Tax, F. E. and Feldmann K. A. Plant Physiol.; The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. 1999; 119:897-907.
10. Klahre, U., Noguchi, T., Fujioka, S., Takatsuto, S., Yokota T., Nomura T., Yoshida, S. and Chua, N. H.; Plant Cell.; The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. 1998; 10:1677-1690.
11. Oh, M., Honey, S. H. and Tax, F. E.; Int. J. Mol. Sci.; The control of cell expansion, cell division, and vascular development by brassinosteroids: a historical perspective. 2020; 21:1743.
12. Hothorn, M., Belkhadir, Y., Dreux, M., Dabi, T., Noel, J. P., Wilson, I. A. and Chory, J.; Nature.; Structural basis of steroid hormone perception by the receptor kinase BRI1. 2011; 474:467-471.
13. Hwang, H., Ryu, H. and Cho, H. Brassinosteroid signaling pathways interplaying with diverse signaling cues for crop enhancement. 2021; 11:556.
14. Zhu, J., Sae-seaw, J. and Wang, Z.; Development at glance.; Brassinosteroid signalling. 2013; 140:1615-1620.
15. Gampala, S., Kim, T., He, J., Tang, W., Deng, Z., Bai, M., Guan, S., Lalonde, S., Sun, Y. and Gendron, J.; Dev. Cell.; An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. 2007; 13:177-189.
16. Ryu, H., Kim, K. Cho, H. Park, J. Choe, S. and Hwang, I.; Plant Cell.; Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. 2007; 19:2749-2762.
17. Kim, E. and Russinova, E.; Current Biology.; Brassinosteroid signalling. 2020; 30: R287-R301.
18. Rajewska, I., Talarek, M. and Bajguz, A.; Front Plant Sci.; Brassinosteroids and response of plants to heavy metals action. 2016; 7:629.
19. Xia, X. J., Fang, P. P., Guo, X., Qian, X. J., Zhou, J., Shi, K., Zhou, Y. H. and Yu, J. Q.; Plant Cell Environ.; Brassinosteroid-mediated apoplastic H2O2-glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato. 2018; 41(5):1052- 1064.
20. Wang, B., Li, Y. and Zhang, W. H.; Ann Bot.; Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency. 2012; 110(3):681-688.
21. Ahammed, G. J., Li, X., Liu, A. and Chen, S.; journal of plant growth regulation; Brassinosteroids in plant tolerance to abiotic stress. 2020.
22. Amraee, L., Rahmani, F. and Abdollahi, B. M.; Plant Physiol Biochem; 24-Epibrassinolide alters DNA cytosine methylation of Linum usitatissimum L. under salinity stress. 2019; 139:478-484.
23. Yin, W., Dong, N., Niu, M., Zhang, X., Li, L., Liu, J., Liu, B. and Tong, H.; Crop J.; Brassinosteroid-regulated plant growth and development and gene expression in soybean. 2019; 7(3):411-418.
24. Tanveer, M., Shahzad, B., Sharma A. and Khan, E. A.; Plant Physiology and Biochemistry; 24- Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. 2019; 135: 295-303.
25. Lone, W. A., Majeed, N., Yaqoob, U. and John, R.; Plant cell reports; Exogenous brassinosteroid and jasmonic acid improve drought tolerance in Brassica rapa L. genotypes by modulating osmolytes, antioxidants and photosynthetic system. 2021; https://doi.org/10.1007/s00299-021- 02763-9.
26. Khan, I., Awan, S. A., Ikram, R., Rizwan, M., Akhtar, N., Yasmin, H., Sayyed, R. Z., Ali, S. and Ilyas, N.; Physiologia Plantarum; Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress. 2020; 172:696-706.
27. Gill, M. B., Call, K., Zhang, G. and Zeng, F.; Plant growth regul.; Brassinolide alleviates the drought- induced adverse effects in barley by modulation of enzymatic antioxidants and ultrastructure. 2017; 82:447-455.
28. Bita, C. E. and Gerats, T.; Front. Plant Sci.; Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. 2013; 4:273.
29. Martinez, C., Espinosa-Ruiz, A., Lucas, M., Bernardo-Garcia, S., Franco-Zorrilla, J. M. and Prat, S.; EMBO J.; PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. 2018; 37:99552.
30. Martins, S., Jorda, A., Cayrel, A., Huguet, S., Roux, C. P. L., Ljung, K. and Vert, G.; Nat. Commun.; Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. 2017; 8:309.
31. Sadura, I. and Janeczko, A.; Biol Plant; Physiological and molecular mechanisms of brassinosteroid-induced tolerance to high and low temperature in plants. 2018; 62(4):601-616.
32. Zhang, Y., Liang, Y., Zhao, X., Jin, X., Hou, L., Shi, Y. and Ahammed, G. J.; Agronomy; Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. 2019; 9(11):733.
33. Zhao, M., Yuan, L., Wang, J., Xie, S., Zheng, Y., Nie, L., Zhu, S., Hou, J., Chen, G. and Wang, C.; BMC Genomics; Transcriptome analysis reveals a positive effect of brassinosteroids on the photosynthetic capacity of wucai under low temperature. 2019; 20(1):810.
34. Yue, J., You, Y., Zhang, L., Fu, Z., Wang, J., Zhang, J. and Guy, R. D.; J Plant Growth Regul.; Exogenous 24-epibrassinolide alleviates effects of salt stress on chloroplasts and photosynthesis in Robinia pseudoacacia L. seedlings. 2018; 38(2):669-682.
35. Singh, S. and Prasad, S. M.; Plant Growth Regul.; Effects of 28-homobrassinoloid on key physiological attributes of Solanum lycopersicum seedlings.

n[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

n


n[if 1114 equals=”Yes”]n

n[/if 1114]”},{“box”:2,”content”:”

Regular Issue Open Access Article

n

n

n

n

n

Research & Reviews : Journal of Botany

n

[if 344 not_equal=””]ISSN: 2278-2222[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 10
Issue 3
Received September 19, 2021
Accepted October 27, 2021
Published November 29, 2021

n

n

n

n

Editor

n

n


n

Reviewer

n

n


n n

n”},{“box”:6,”content”:”“}]

Read More
RRJoB

A Review: Carissa Carendas Leaves: Phytochemical Constituents, Traditional Use, and Pharmacological Properties

[{“box”:0,”content”:”

n

n

 > 

n

n

 > 

n

n

n

n

n

n

n

By [foreach 286]u00a0

u00a0Sonia Singh, Anjali Sahu,

[/foreach]
nJanuary 10, 2023 at 6:29 am

n

nAbstract

n

Carissa carendas called Karanda are used in many traditional systems Unani, Ayurveda, homeopathic systems. Traditionally various herbal drugs used in curing many diseases are used singly or in a combination of another herbal drugs. Carissa carendas is all part of plant-like fruit, root, leaves all parts is used to treat many diseases traditionally. Various herbal drugs individually or in combination have been recommended for the treatment of different diseases. The Caresia carendas commonly known as “Karanda” have been recognized in a different system of traditional medicine to cure various diseases. It contains several phytochemical constituents belonging to the terpenoids category. Various phytochemical constituents present in a plant like flavonoids, tannins, terpenoids, alkaloids, glycosides. The leaf part is used as Analgesic and antipyretic, anticonvulsant, anti- asthmatic, anti-arthritis, antihyperlipidemic, antioxidant, anti-hepatoprotective, antioxidant properties. A higher gross heat value of this species indicates its higher potential to be used as a good fuel source. The conclusion showed that the leaf part of the extract exhibited the highest antioxidant activity and total phenolic content. So in the future, many, more diseases control by the extract of leaf part of Carisa calendars plant-like wound healing activity, etc.

n

n

n

n

Volume :u00a0u00a010 | Issue :u00a0u00a02 | Received :u00a0u00a0June 11, 2021 | Accepted :u00a0u00a0July 23, 2021 | Published :u00a0u00a0August 24, 2021n[if 424 equals=”Regular Issue”][This article belongs to Research & Reviews : Journal of Botany(rrjob)] [/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue A Review: Carissa Carendas Leaves: Phytochemical Constituents, Traditional Use, and Pharmacological Properties under section in Research & Reviews : Journal of Botany(rrjob)] [/if 424]
Keywords Wound Healing, Plants, Bioactive, Leaf part, Activity

n

n

n

n

n


n[if 992 equals=”Transformative”]

n

n

Full Text

n

n

n

[/if 992][if 992 not_equal=”Transformative”]

n

n

Full Text

n

n

n

[/if 992] n


nn

[if 379 not_equal=””]n

[foreach 379]n

n[/foreach]

n[/if 379]

n

References

n[if 1104 equals=””]n

1. Nguyen, D.T., Orgill D.P., Murphy G.F. (2009). Chapter 4: The Pathophysiologic Basis for Wound Healing and Cutaneous Regeneration. Biomaterials For Treating Skin Loss. Woodhead Publishing (UK/Europe) & CRC Press (US), Cambridge/Boca Raton, p. 25-57. (ISBN 978-1-4200-9989-9/ISBN 978-1-84569-363-3).
2. Stadelmann, WK; Digenis, AG; Tobin, GR (1998). “”Physiology and healing dynamics of chronic cutaneous wounds””. American journal of surgery 176 (2A Suppl): 26S–38S. doi:10.1016/S0002-9610(98)00183-4. PMID 9777970.
3. Quinn, J.V. (1998). Tissue Adhesives in Wound Care. Hamilton, Ont. B.C. Decker, Inc. Electronic book.
4. Poquérusse, Jessie. “”The Neuroscience of Sharing””. Retrieved 16 August 2012.
5. Midwood, K.S.; Williams, L.V.; Schwarzbauer, J.E. (2004). “”Tissue repair and the dynamics of the extracellular matrix””. The International Journal of Biochemistry & Cell Biology 36 (6): 1031–1037. doi:10.1016/j.biocel.2003.12.003. PMID 15094118.
6. Hegde K, Thakker SP, Joshi AB, Shastry CS, Chandrashekhar KS. Anticonvulsant activity of Carissa carandas Linn. root extract in experimental mice. Trop J Pharm Res 2009;8:117-25.
7. Rastogi RC, Vohra MM, Rastogi RP, Dhar ML. Studies on Carissa carandas Linn. Part I. Isolation of the cardiac active principles. Indian J Chem 1966;4:132.
8. Singh B, Rastogi RP. The structure of carindone. Phytochemistry 1972;11(5):1797-801.
9. Pal R, Kulshreshtha DK, Rastogi RP. A new lignan from Carissa carandas. Phytochemistry 1975;14:2302-3.
10. Hegde K, Joshi AB. Hepatoprotective effect of Carissa carandas Linn root extract against CCl4 and paracetamol induced hepatic oxidative stress. Indian J Exp Biol 2009;47(8):660-7.
11. Ganapaty S, Bharath CH, Laatsch H. Des-N-Methylnoracronycine from, the roots of Carissa conjesta. Wight. Int J Green Pharm 2010;4(3):186.
12. Wangteeraprasert R, Likhitwitayawuid K. Lignans and a sesquiterpene glucoside from Carissa carandas stem. Helv Chim Acta 2009;92(6):1217-23.
13. Naim Z, Khan MA, Nizami SS. Isolation of a new isomer of ursolic acid from fruits and leaves of Carissa carandas. Pak J Sci Ind Res1988;31(11):753.
14. Siddiqui BS, Ghani U, Ali ST, Usmani SB, Begum S. Triterpenoidal constituents of the leaves of Carissa carandas. Nat Prod Res 2003;17(3):153-8.
15. Begum S, Syed SA, Siddiqui BS, Sattar SA, Choudhary MI. Carandinol: First isohopane triterpene from the leaves of Carissa carandas L. and its cytotoxicity against cancer cell lines. Phytochem Lett 2013;6(1):91-5.
16. Sharma A, Tiwari RK, Kaushik A, Tyagi LK, Shankar K, Virmani T, et al. Standardisation of Carissa carandas Linn: A drug used in Indian system of medicine as per WHO Guidelines. Cont J Pharm Sci 2007;1:9-14.
17. Devmurari V, Shivanand P, Goyani MB, Vaghani S, Jivani NP. A review: Carissa congesta: Phytochemical constituents, traditional use and pharmacological properties. Pharmacogn Rev 2009;3(6):375.
18. Pino JA, Marbot R, Vázquez C. Volatile flavor constituents of Karanda (Carissa carandas L.) fruit. J Essent Oil Res 2004;16(5):432-4.
19. S.N. Hasmah, A. Bhatt, C.L. Keng. (2013). Micropropagation of Asam Karanda (Carissa carandas Linn). Pertanika Journal of Tropical Agricultural Science. 36(1).
20. R. Saha, L. Hossain, U. Bose, A.A. Rahman. (2010). Neuropharmacological and diuretic activities of Carissa carandas linn. leaf. Pharmacologyonline. 2010(2): 320-327.
21. T. Agarwal, R. Singh, A.D. Shukla, I. Waris. (2012). In vitro study of antibacterial activity of Carissa carandas leaf extracts. Asian J. Plant Sci. Res. 2(1): 36-40.
22. M. Hati, B.K. Jena, S. Kar, A.K. Nayak. (2014). Evaluation of anti-inflammatory and anti-pyretic activity of Carissa carandas L. leaf extract in rats. J. Pharm. Chem. Biol. Sci. 1: 18-25.
23. Garg, Vipin Kumar, Sarvesh Kumar Paliwal, and Swapnil Sharma. “”A ALGESIC ADA Tipyretic Activities Of Aqueous Extract Of Leaves Of Carissa CARA DAS LI.”” Pharmacologyonline 1: 1109-1119 (2011)
24. MA, Dar, J. Kumar, and R. Sami. “”Anti-Arthritic Activity of Leaf of Carissa carandas (L) against Adjuvant-Induced Arthritis in Rat.”” Journal of Natural & Ayurvedic Medicine,2019
25. Yadav, Ajay, Ravi Kant Vishwakarma, and Alok Pal Jain. “”Assessment of antiasthmatic activity of Carissa carandas L. leaves.”” Adv Pharmaceutical Journal 4 (2019): 100-102.
26. Shinde, Manisha, Ritu Gilhotra, and Sanjay Chaudhari. “”Anticonvulsant And Sedative Activities Of Extracts Of Carissa Carandas Leaves.”” Journal of Drug Delivery and Therapeutics 8.5 (2018): 369-373.
27. Sumbul, S., and S. I. Ahmed. “”Anti-hyperlipidemic activity of Carissa carandas (Auct.) leaves extract in egg yolk induced hyperlipidemic rats.”” J Basic Appl Sci 8 (2012): 124-34.
28. Kumar, Vijay, et al. “”Comparative phytochemical and antioxidant activities of methanol and petroleum ether extract of Carissa carandas leaves, fruit and seed.”” Int J Res 8 (2017): 70-75.
29. Bhati, Pooja, Ajay Shukla, and Maya Sharma. “”Hepatoprotective activity of leaves extracts of Carissa carandas Linn.”” American Journal of Pharm Research 4.11 (2014): 5185-5192.
30. Begum, Sabira, et al. “”Carandinol: First isohopane triterpene from the leaves of Carissa carandas L. and its cytotoxicity against cancer cell lines.”” Phytochemistry Letters 6.1 (2013): 91-95.
31. Tenguria, Rajesh Kumar, Anand Firodiya, and Firoz Naem Khan. “”Biodiversity of endophytic fungi in leaves of Carissa carandas linn. from central region of Madhya Pradesh.”” Internatl J Appl Biol Pharm Technol 3.4 (2012): 376-380.

nn[/if 1104] [if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””], [/if 1106]
  2. n[/foreach]

n[/if 1104]

n[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=”Regular Issue”] Regular Issue[/if 424] Open Access Article

n

Editors Overview

rrjob maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

n

“},{“box”:4,”content”:”

n“},{“box”:1,”content”:”

    By  [foreach 286]n

  1. n

    Sonia Singh, Anjali Sahu

    n

  2. [/foreach]

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Ph.D. Student, Assistant Professor,Department of Pharmacy, Rawtpura Sarkar University Raipur, Department of Pharmacy, Rugata Institute of Pharmaceutical Science, Durg,Chhattisgarh, Chhattisgarh,India, India
  2. n[/if 1175][/foreach]

n

n

n

n

n

Abstract

nCarissa carendas called Karanda are used in many traditional systems Unani, Ayurveda, homeopathic systems. Traditionally various herbal drugs used in curing many diseases are used singly or in a combination of another herbal drugs. Carissa carendas is all part of plant-like fruit, root, leaves all parts is used to treat many diseases traditionally. Various herbal drugs individually or in combination have been recommended for the treatment of different diseases. The Caresia carendas commonly known as “Karanda” have been recognized in a different system of traditional medicine to cure various diseases. It contains several phytochemical constituents belonging to the terpenoids category. Various phytochemical constituents present in a plant like flavonoids, tannins, terpenoids, alkaloids, glycosides. The leaf part is used as Analgesic and antipyretic, anticonvulsant, anti- asthmatic, anti-arthritis, antihyperlipidemic, antioxidant, anti-hepatoprotective, antioxidant properties. A higher gross heat value of this species indicates its higher potential to be used as a good fuel source. The conclusion showed that the leaf part of the extract exhibited the highest antioxidant activity and total phenolic content. So in the future, many, more diseases control by the extract of leaf part of Carisa calendars plant-like wound healing activity, etc.n

n

n

Keywords: Wound Healing, Plants, Bioactive, Leaf part, Activity

n[if 424 equals=”Regular Issue”][This article belongs to Research & Reviews : Journal of Botany(rrjob)]

n[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Research & Reviews : Journal of Botany(rrjob)] [/if 424]

n

n

n


n[if 992 equals=”Transformative”]n

n

n

Full Text

n

n

nn[/if 992]n[if 992 not_equal=”Transformative”]n

n

Full Text

n

n

n

n


[/if 992]n[if 379 not_equal=””]

Browse Figures

n

n

[foreach 379]n

n[/foreach]

n

[/if 379]n

n

References

n[if 1104 equals=””]

1. Nguyen, D.T., Orgill D.P., Murphy G.F. (2009). Chapter 4: The Pathophysiologic Basis for Wound Healing and Cutaneous Regeneration. Biomaterials For Treating Skin Loss. Woodhead Publishing (UK/Europe) & CRC Press (US), Cambridge/Boca Raton, p. 25-57. (ISBN 978-1-4200-9989-9/ISBN 978-1-84569-363-3).
2. Stadelmann, WK; Digenis, AG; Tobin, GR (1998). “”Physiology and healing dynamics of chronic cutaneous wounds””. American journal of surgery 176 (2A Suppl): 26S–38S. doi:10.1016/S0002-9610(98)00183-4. PMID 9777970.
3. Quinn, J.V. (1998). Tissue Adhesives in Wound Care. Hamilton, Ont. B.C. Decker, Inc. Electronic book.
4. Poquérusse, Jessie. “”The Neuroscience of Sharing””. Retrieved 16 August 2012.
5. Midwood, K.S.; Williams, L.V.; Schwarzbauer, J.E. (2004). “”Tissue repair and the dynamics of the extracellular matrix””. The International Journal of Biochemistry & Cell Biology 36 (6): 1031–1037. doi:10.1016/j.biocel.2003.12.003. PMID 15094118.
6. Hegde K, Thakker SP, Joshi AB, Shastry CS, Chandrashekhar KS. Anticonvulsant activity of Carissa carandas Linn. root extract in experimental mice. Trop J Pharm Res 2009;8:117-25.
7. Rastogi RC, Vohra MM, Rastogi RP, Dhar ML. Studies on Carissa carandas Linn. Part I. Isolation of the cardiac active principles. Indian J Chem 1966;4:132.
8. Singh B, Rastogi RP. The structure of carindone. Phytochemistry 1972;11(5):1797-801.
9. Pal R, Kulshreshtha DK, Rastogi RP. A new lignan from Carissa carandas. Phytochemistry 1975;14:2302-3.
10. Hegde K, Joshi AB. Hepatoprotective effect of Carissa carandas Linn root extract against CCl4 and paracetamol induced hepatic oxidative stress. Indian J Exp Biol 2009;47(8):660-7.
11. Ganapaty S, Bharath CH, Laatsch H. Des-N-Methylnoracronycine from, the roots of Carissa conjesta. Wight. Int J Green Pharm 2010;4(3):186.
12. Wangteeraprasert R, Likhitwitayawuid K. Lignans and a sesquiterpene glucoside from Carissa carandas stem. Helv Chim Acta 2009;92(6):1217-23.
13. Naim Z, Khan MA, Nizami SS. Isolation of a new isomer of ursolic acid from fruits and leaves of Carissa carandas. Pak J Sci Ind Res1988;31(11):753.
14. Siddiqui BS, Ghani U, Ali ST, Usmani SB, Begum S. Triterpenoidal constituents of the leaves of Carissa carandas. Nat Prod Res 2003;17(3):153-8.
15. Begum S, Syed SA, Siddiqui BS, Sattar SA, Choudhary MI. Carandinol: First isohopane triterpene from the leaves of Carissa carandas L. and its cytotoxicity against cancer cell lines. Phytochem Lett 2013;6(1):91-5.
16. Sharma A, Tiwari RK, Kaushik A, Tyagi LK, Shankar K, Virmani T, et al. Standardisation of Carissa carandas Linn: A drug used in Indian system of medicine as per WHO Guidelines. Cont J Pharm Sci 2007;1:9-14.
17. Devmurari V, Shivanand P, Goyani MB, Vaghani S, Jivani NP. A review: Carissa congesta: Phytochemical constituents, traditional use and pharmacological properties. Pharmacogn Rev 2009;3(6):375.
18. Pino JA, Marbot R, Vázquez C. Volatile flavor constituents of Karanda (Carissa carandas L.) fruit. J Essent Oil Res 2004;16(5):432-4.
19. S.N. Hasmah, A. Bhatt, C.L. Keng. (2013). Micropropagation of Asam Karanda (Carissa carandas Linn). Pertanika Journal of Tropical Agricultural Science. 36(1).
20. R. Saha, L. Hossain, U. Bose, A.A. Rahman. (2010). Neuropharmacological and diuretic activities of Carissa carandas linn. leaf. Pharmacologyonline. 2010(2): 320-327.
21. T. Agarwal, R. Singh, A.D. Shukla, I. Waris. (2012). In vitro study of antibacterial activity of Carissa carandas leaf extracts. Asian J. Plant Sci. Res. 2(1): 36-40.
22. M. Hati, B.K. Jena, S. Kar, A.K. Nayak. (2014). Evaluation of anti-inflammatory and anti-pyretic activity of Carissa carandas L. leaf extract in rats. J. Pharm. Chem. Biol. Sci. 1: 18-25.
23. Garg, Vipin Kumar, Sarvesh Kumar Paliwal, and Swapnil Sharma. “”A ALGESIC ADA Tipyretic Activities Of Aqueous Extract Of Leaves Of Carissa CARA DAS LI.”” Pharmacologyonline 1: 1109-1119 (2011)
24. MA, Dar, J. Kumar, and R. Sami. “”Anti-Arthritic Activity of Leaf of Carissa carandas (L) against Adjuvant-Induced Arthritis in Rat.”” Journal of Natural & Ayurvedic Medicine,2019
25. Yadav, Ajay, Ravi Kant Vishwakarma, and Alok Pal Jain. “”Assessment of antiasthmatic activity of Carissa carandas L. leaves.”” Adv Pharmaceutical Journal 4 (2019): 100-102.
26. Shinde, Manisha, Ritu Gilhotra, and Sanjay Chaudhari. “”Anticonvulsant And Sedative Activities Of Extracts Of Carissa Carandas Leaves.”” Journal of Drug Delivery and Therapeutics 8.5 (2018): 369-373.
27. Sumbul, S., and S. I. Ahmed. “”Anti-hyperlipidemic activity of Carissa carandas (Auct.) leaves extract in egg yolk induced hyperlipidemic rats.”” J Basic Appl Sci 8 (2012): 124-34.
28. Kumar, Vijay, et al. “”Comparative phytochemical and antioxidant activities of methanol and petroleum ether extract of Carissa carandas leaves, fruit and seed.”” Int J Res 8 (2017): 70-75.
29. Bhati, Pooja, Ajay Shukla, and Maya Sharma. “”Hepatoprotective activity of leaves extracts of Carissa carandas Linn.”” American Journal of Pharm Research 4.11 (2014): 5185-5192.
30. Begum, Sabira, et al. “”Carandinol: First isohopane triterpene from the leaves of Carissa carandas L. and its cytotoxicity against cancer cell lines.”” Phytochemistry Letters 6.1 (2013): 91-95.
31. Tenguria, Rajesh Kumar, Anand Firodiya, and Firoz Naem Khan. “”Biodiversity of endophytic fungi in leaves of Carissa carandas linn. from central region of Madhya Pradesh.”” Internatl J Appl Biol Pharm Technol 3.4 (2012): 376-380.

n[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

n


n[if 1114 equals=”Yes”]n

n[/if 1114]”},{“box”:2,”content”:”

Regular Issue Open Access Article

n

n

n

n

n

Research & Reviews : Journal of Botany

n

[if 344 not_equal=””]ISSN: 2278-2222[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 10
Issue 2
Received June 11, 2021
Accepted July 23, 2021
Published August 24, 2021

n

n

n

n

Editor

n

n


n

Reviewer

n

n


n n

n”},{“box”:6,”content”:”“}]

Read More
RRJoB

Construction and Development of pSB111 Bar Plasmid Vector for Activation Tagging

[{“box”:0,”content”:”

n

n

 > 

n

n

 > 

n

n

n

n

n

n

n

By [foreach 286]u00a0

u00a0Shravana Kumar Panditi, Srinivas Gorripati, Naveena Lavanya Latha Jeevigunta,

[/foreach]
nJanuary 10, 2023 at 6:06 am

n

nAbstract

n

To get desired traits and to know the precise expression patterns of genes in the plant, Agrobacterium tumefaciens has been widely employed in the generation of transgenic plants using plasmid vectors. Many methods are come forward to establish the gene expression of unknown genes but in these techniques gene alteration isthe main drawback orsometimesit islethal to organisms also, to overcome these problems activator tag method developed to know the specific expression of genes at different stages of growth by activating the genes of an organism. A reporter gene with a modest promoter is included in the activator tag vector. The basic principle behind is the expression of reporter gene of activator vector by elucidating the tagged gene expression. Using the Trans configuration of vir genes from the plasmid Agrobacterium tumefaciens to transfer right and left sequence bordered T-DNA into the nuclear genome of plants, we designed a vector molecule that promotes expression of a specific gene at more than four times its normal expression and is useful for efficient transformation to higher plants. In this study we modified activator vector by inserting the 4x activator which shows four times effectiveness than normal activator to get the more promising results. To tag and know the genes and their expression profiles, we produced a binary vector consisting of 1.8 kb GFP cassette as a reporter gene and 1.4 kb tetramer of CaMv35S activator (4X-Ac) cloned at HindIII site of pSB11 bar intermediate vector. The recombinant clone harbouring different expressions units were mobilized into Agrobacterium tumefaciens through DH5α cells triparental mating to produce a super binary vector pSB111-bar-4xAc-GFP. The generated vector is beneficial to produce transgenic lines of different plant species.

n

n

n

n

Volume :u00a0u00a011 | Issue :u00a0u00a02 | Received :u00a0u00a0February 15, 2022 | Accepted :u00a0u00a0March 20, 2022 | Published :u00a0u00a0April 1, 2022n[if 424 equals=”Regular Issue”][This article belongs to Research & Reviews : Journal of Botany(rrjob)] [/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue Construction and Development of pSB111 Bar Plasmid Vector for Activation Tagging under section in Research & Reviews : Journal of Botany(rrjob)] [/if 424]
Keywords pSB11 bar vector, Agrobacterium tumefaciens, Activator tagging, CaMV35S activator, GFPcassette.

n

n

n

n

n


n[if 992 equals=”Transformative”]

n

n

Full Text

n

n

n

[/if 992][if 992 not_equal=”Transformative”]

n

n

Full Text

n

n

n

[/if 992] n


nn

[if 379 not_equal=””]n

[foreach 379]n

n[/foreach]

n[/if 379]

n

References

n[if 1104 equals=””]n

1. Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., and Schilperoort, R. A. (1983) Nature 303, 179–180.
2. De Cleene, M., De Ley, J., 1976. The host range of crown gall. Bot. Rev. 42, 389–466.de Groot, M.J.A., Bundock, P., Hooykaas, P.J.J., Beijersbergen, A.G.M., 1998. Nat. Biotechnol.16, 839–842
3. Skarnes,n W.C.(1990) Biotechnology, 8, 827 ± 831.
4. Walden R, Fritze K, Hayashi H, Miklashevichs E, Harling H, and Schell J (1994) Plant Mol Biol 26: 1521–1528.
5. Van der Fits L, Hilliou F, and Memelink J (2001) Transgenic Res 10: 513–521.
6. Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, and An G (2002) Plant Physiol 130: 1636–1644.
7. Ichikawa T, Nakazawa M, Kawashima M, Muto S, Gohda K, Suzuki K, Ishikawa A, Kobayashi H, Yoshizumi T, Tsumoto Y, and others (2003) Plant J 36: 421–429.
8. Feldmann, K.A. 1991. Plant J.1: 71–82.
9. Koncz, C., Nemeth, K., Redei, G.P. and Schell, J. (1992) Plant Mol. Biol. 20:963–976.
10. Walbot, V. (1992). Annu.Rev. Plant Physiol. Plant Mol. Biol. 43: 49–82.
11. Schoelz JE, Bourque JE. Academic Press, 1999: 1275–81.
12. Kohli A, Griffiths S, Palacios N, Twyman RM, Vain P, Laurie DA, Christou P. (1999) The Plant Journal 17: 591–601.
13. Ho M-W, Ryan A, Cummins J. (1999) Microb. Ecol. Health Dis. 10: 33–59.
14. Shuvan Wan, Jinxia wu, Zhiguo zhang, Xuehuj Sun, Yaci Lv, Ci Gao, Yingda Ning, Jun Ma, Yupeng Guo, Qian zhang, xia zheng, Caiying zhang, Zhiying ma, Tiegang Lu. (2009) Plant Molecular Biology, 69, 1, pp 69–80.
15. Kakimoto, T. (1996) Science 274: 982–985.
16. Ruvkin,G. B., and F.M. Ausubel. (1979) Nature 289:85-88.
17. Goldberg J.B.; Ohman D.E. (1984) J. Bacteriol.158:1115–1121.
18. Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Plant J 10: 165–174.
19. Srinivas G, Rajasekhar K, Kumar SK, Kavitha V, Naveena Lavanya Latha J. (2021) J Basic Microbiol. 2021; 1–15.
20. Sambrook J, Russell DW. Cold Spring Harb Protoc; 2006; doi:10.1101/pdb.prot3932
21. Pei Yun Lee, John Costumbrado, Chih-YuanHsu,Yong Hoon Kim (2012).doi:10.3791/3923
22. Zhuravleva L, Oreshkin E, Bezborodoy A (1987) Prikl Biokhim Mikrobiol. 23 (2): 208–15.PMID 3033630.
23. Tang, D et al. (2000) Protein Engineering. 13 (4): 283 9.d0i:10.1093/protein/13.4.283.PMID 10810160.
24. Theriault G, Roy PH, Howard KA, Benner JS, Brooks JE, Watere AF, GIngeras TR ( 1985) Nucleic Acids Res.13 (23): 8441 61.doi:10.1093/nar/13.23.8441.

nn[/if 1104] [if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””], [/if 1106]
  2. n[/foreach]

n[/if 1104]

n[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=”Regular Issue”] Regular Issue[/if 424] Open Access Article

n

Editors Overview

rrjob maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

n

“},{“box”:4,”content”:”

n“},{“box”:1,”content”:”

    By  [foreach 286]n

  1. n

    Shravana Kumar Panditi, Srinivas Gorripati, Naveena Lavanya Latha Jeevigunta

    n

  2. [/foreach]

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Research Scholar, Research Scholar, Assistant Professor,Department of Biosciences and Biotechnology, Krishna University, Machilipatnam, Department of Biosciences and Biotechnology, Krishna University, Machilipatnam, Department of Biosciences and Biotechnology, Krishna University, Machilipatnam,Andhra Pradesh, Andhra Pradesh, Andhra Pradesh,India, India, India
  2. n[/if 1175][/foreach]

n

n

n

n

n

Abstract

nTo get desired traits and to know the precise expression patterns of genes in the plant, Agrobacterium tumefaciens has been widely employed in the generation of transgenic plants using plasmid vectors. Many methods are come forward to establish the gene expression of unknown genes but in these techniques gene alteration isthe main drawback orsometimesit islethal to organisms also, to overcome these problems activator tag method developed to know the specific expression of genes at different stages of growth by activating the genes of an organism. A reporter gene with a modest promoter is included in the activator tag vector. The basic principle behind is the expression of reporter gene of activator vector by elucidating the tagged gene expression. Using the Trans configuration of vir genes from the plasmid Agrobacterium tumefaciens to transfer right and left sequence bordered T-DNA into the nuclear genome of plants, we designed a vector molecule that promotes expression of a specific gene at more than four times its normal expression and is useful for efficient transformation to higher plants. In this study we modified activator vector by inserting the 4x activator which shows four times effectiveness than normal activator to get the more promising results. To tag and know the genes and their expression profiles, we produced a binary vector consisting of 1.8 kb GFP cassette as a reporter gene and 1.4 kb tetramer of CaMv35S activator (4X-Ac) cloned at HindIII site of pSB11 bar intermediate vector. The recombinant clone harbouring different expressions units were mobilized into Agrobacterium tumefaciens through DH5α cells triparental mating to produce a super binary vector pSB111-bar-4xAc-GFP. The generated vector is beneficial to produce transgenic lines of different plant species.n

n

n

Keywords: pSB11 bar vector, Agrobacterium tumefaciens, Activator tagging, CaMV35S activator, GFPcassette.

n[if 424 equals=”Regular Issue”][This article belongs to Research & Reviews : Journal of Botany(rrjob)]

n[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Research & Reviews : Journal of Botany(rrjob)] [/if 424]

n

n

n


n[if 992 equals=”Transformative”]n

n

n

Full Text

n

n

nn[/if 992]n[if 992 not_equal=”Transformative”]n

n

Full Text

n

n

n

n


[/if 992]n[if 379 not_equal=””]

Browse Figures

n

n

[foreach 379]n

n[/foreach]

n

[/if 379]n

n

References

n[if 1104 equals=””]

1. Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., and Schilperoort, R. A. (1983) Nature 303, 179–180.
2. De Cleene, M., De Ley, J., 1976. The host range of crown gall. Bot. Rev. 42, 389–466.de Groot, M.J.A., Bundock, P., Hooykaas, P.J.J., Beijersbergen, A.G.M., 1998. Nat. Biotechnol.16, 839–842
3. Skarnes,n W.C.(1990) Biotechnology, 8, 827 ± 831.
4. Walden R, Fritze K, Hayashi H, Miklashevichs E, Harling H, and Schell J (1994) Plant Mol Biol 26: 1521–1528.
5. Van der Fits L, Hilliou F, and Memelink J (2001) Transgenic Res 10: 513–521.
6. Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, and An G (2002) Plant Physiol 130: 1636–1644.
7. Ichikawa T, Nakazawa M, Kawashima M, Muto S, Gohda K, Suzuki K, Ishikawa A, Kobayashi H, Yoshizumi T, Tsumoto Y, and others (2003) Plant J 36: 421–429.
8. Feldmann, K.A. 1991. Plant J.1: 71–82.
9. Koncz, C., Nemeth, K., Redei, G.P. and Schell, J. (1992) Plant Mol. Biol. 20:963–976.
10. Walbot, V. (1992). Annu.Rev. Plant Physiol. Plant Mol. Biol. 43: 49–82.
11. Schoelz JE, Bourque JE. Academic Press, 1999: 1275–81.
12. Kohli A, Griffiths S, Palacios N, Twyman RM, Vain P, Laurie DA, Christou P. (1999) The Plant Journal 17: 591–601.
13. Ho M-W, Ryan A, Cummins J. (1999) Microb. Ecol. Health Dis. 10: 33–59.
14. Shuvan Wan, Jinxia wu, Zhiguo zhang, Xuehuj Sun, Yaci Lv, Ci Gao, Yingda Ning, Jun Ma, Yupeng Guo, Qian zhang, xia zheng, Caiying zhang, Zhiying ma, Tiegang Lu. (2009) Plant Molecular Biology, 69, 1, pp 69–80.
15. Kakimoto, T. (1996) Science 274: 982–985.
16. Ruvkin,G. B., and F.M. Ausubel. (1979) Nature 289:85-88.
17. Goldberg J.B.; Ohman D.E. (1984) J. Bacteriol.158:1115–1121.
18. Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Plant J 10: 165–174.
19. Srinivas G, Rajasekhar K, Kumar SK, Kavitha V, Naveena Lavanya Latha J. (2021) J Basic Microbiol. 2021; 1–15.
20. Sambrook J, Russell DW. Cold Spring Harb Protoc; 2006; doi:10.1101/pdb.prot3932
21. Pei Yun Lee, John Costumbrado, Chih-YuanHsu,Yong Hoon Kim (2012).doi:10.3791/3923
22. Zhuravleva L, Oreshkin E, Bezborodoy A (1987) Prikl Biokhim Mikrobiol. 23 (2): 208–15.PMID 3033630.
23. Tang, D et al. (2000) Protein Engineering. 13 (4): 283 9.d0i:10.1093/protein/13.4.283.PMID 10810160.
24. Theriault G, Roy PH, Howard KA, Benner JS, Brooks JE, Watere AF, GIngeras TR ( 1985) Nucleic Acids Res.13 (23): 8441 61.doi:10.1093/nar/13.23.8441.

n[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

n


n[if 1114 equals=”Yes”]n

n[/if 1114]”},{“box”:2,”content”:”

Regular Issue Open Access Article

n

n

n

n

n

Research & Reviews : Journal of Botany

n

[if 344 not_equal=””]ISSN: 2278-2222[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 11
Issue 2
Received February 15, 2022
Accepted March 20, 2022
Published April 1, 2022

n

n

n

n

Editor

n

n


n

Reviewer

n

n


n n

n”},{“box”:6,”content”:”“}]

Read More