This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.
Neha Bansal,
Chitra Gupta,
Yash Sahini,
- Research Scholar, Department of Chemistry, P. K. University, Karera, Shivpuri Road, Madhya Pradesh, India
- Assistant Professor, Department of Chemistry, Bundelkhand University, Jhansi, Uttar Pradesh, India
- M. Sc. Student, Department of Chemistry, Institute of Basic Science, Bundelkhand University, Jhansi, Uttar Pradesh, India
Abstract
Water is the most essential commodity in our day to day life. It is unimaginable to survive without water. Access to clean water has emerged as a major issue globally. The Nandanpura area in Jhansi faces significant challenges with wastewater management, impacting both the environment and public health. Contamination of heavy metals such as Zinc, Copper, Cadmium etc have caused a lot of harmful diseases in human beings. In order to clean that waste water we need to use the process of Phytoremediation. Phytoremediation comprises various processes which includes: phytoextraction, rhizofiltration, phytostabilization, phytodegradation, and phytovolatilization. In phytoextraction, plants are utilized to remove heavy or toxic metals present in water. Similarly the rest of the processes are also used filter the contaminated ground and surface water. A range of studies is analyzed to offer an in-depth perspective on the applications and progress of phytoremediation. That results indicate that specific hyper accumulator plants effectively lower the levels of heavy metals and organic contaminants in wastewater. Additionally, the research explores the socio-economic advantages of implementing phytoremediation in Nandanpura, emphasizing its capacity to enhance environmental quality and community health. This investigation provides important insights into the practical use of phytoremediation technology, serving as a potential framework for other areas dealing with comparable waste water issues.
Keywords: Water, Zinc, Iron, Copper, Contamination, Phytoremediation, Nandanpura
Neha Bansal, Chitra Gupta, Yash Sahini. Phytoremediation for Remediating Waste Water in Nandanpura Area, Jhansi (U. P.). International Journal of Pollution: Prevention & Control. 2025; 03(01):-.
Neha Bansal, Chitra Gupta, Yash Sahini. Phytoremediation for Remediating Waste Water in Nandanpura Area, Jhansi (U. P.). International Journal of Pollution: Prevention & Control. 2025; 03(01):-. Available from: https://journals.stmjournals.com/ijppc/article=2025/view=213093
References
- Waqas U, Farhan A, Haider A, Qumar U, Raza A. Advancements in biofilm formation and control in potable water distribution systems: A comprehensive review and analysis of chloramine decay in water systems. J Environ Chem Eng. 2023 Dec;11(6):111377. doi:10.1016/j.jece.2023.111377.
- Sri Lakshmi K, Hema Sailaja V, Anji Reddy M. Phytoremediation – A Promising Technique in Waste Water Treatment. Int J Sci Res Manag. 2017;5(6):5480-9. doi:10.18535/ijsrm/v5i6.20.
- Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ Adv. 2022;8:100203. doi:10.1016/j.envadv.2022.100203.
- Cheng X, Jiang L, Liu W, Song X, Kumpiene J, Luo C. Phytoremediation of trichloroethylene in the soil/groundwater environment: Progress, problems, and potential. Sci Total Environ. 2024 Dec 1;954:176566. doi:10.1016/j.scitotenv.2024.176566.
- Timalsina H, Gyawali T, Ghimire S, Paudel SR. Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere. 2022;306:135581. doi:10.1016/j.chemosphere.2022.135581.
- Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals—Concepts and applications. Chemosphere. 2013;91(7):869-81. doi:10.1016/j.chemosphere.2013.01.075.
- An Y, Yamin W, Ngin TS, Lokman MYM, Subhadip G, Zhong C. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. 2020 Apr 30;11:359. doi:10.3389/fpls.2020.00359.
- Pilon-Smits E. Phytoremediation. Annu Rev Plant Biol. 2005;56:15-39. doi:10.1146/annurev.arplant.56.032604.144214. PMID:15862088.
- Kumar A, Dadhwal M, Mukherjee G, Srivastava A, Gupta S, Ahuja V. Phytoremediation: Sustainable approach for heavy metal pollution. Scientifica. 2024;2024:3909400. doi:10.1155/2024/3909400.
- Chaudhary K, Khan S, Saraswat P. Introduction to phytoremediation. In: IGI Global. 2020. doi:10.4018/978-1-5225-9016-3.ch001.
- Sharma M, Rawat S, Rautela A. Phytoremediation in sustainable wastewater management: An eco-friendly review of current techniques and future prospects. AQUA. 2024 Sep;73(9):1946–75. doi:10.2166/aqua.2024.427.
- Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. 2011;2011:939161. doi:10.1155/2011/939161.
- Sharma JK, Kumar N, Singh NP, Santal AR. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Front Plant Sci. 2023;14:1076876. doi:10.3389/fpls.2023.1076876. PMID:36778693.
- Bakshe P, Jugade R. Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review. J Hazard Mater Adv. 2023;10:100293. doi:10.1016/j.hazadv.2023.100293.
- Sabreena, Hassan S, Bhat SA, Kumar V, Ganai BA, Ameen F. Phytoremediation of heavy metals: An indispensable contrivance in green remediation technology. Plants (Basel). 2022;11(9):1255. doi:10.3390/plants11091255. PMID:35567256.
- Mocek-Płóciniak A, Mencel J, Zakrzewski W, Roszkowski S. Phytoremediation as an effective remedy for removing trace elements from ecosystems. Plants (Basel). 2023;12(8):1653. doi:10.3390/plants12081653. PMID:37111876.
- Alsafran M, Usman K, Ahmed B, Rizwan M, Saleem MH, Al Jabri H. Understanding the phytoremediation mechanisms of potentially toxic elements: A proteomic overview of recent advances. Front Plant Sci. 2022;13:881242. doi:10.3389/fpls.2022.881242. PMID:35646026.
- Sharma J. Introduction to phytoremediation – A green clean technology. SSRN Electron J. 2018 May 12. doi:10.2139/ssrn.3177321.
- Delgado-González CR, Madariaga-Navarrete A, Fernández-Cortés JM, Islas-Pelcastre M, Oza G, Iqbal HMN, et al. Advances and applications of water phytoremediation: A potential biotechnological approach for the treatment of heavy metals from contaminated water. Int J Environ Res Public Health. 2021;18(10):5215. doi:10.3390/ijerph18105215. PMID:34068925.
- Ali S, Abbas Z, Rizwan M, Zaheer IE, Yavaş İ, Ünay A, et al. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability. 2020;12(5):1927. doi:10.3390/su12051927.
- Raklami A, Meddich A, Oufdou K, Baslam M. Plants-microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. Int J Mol Sci. 2022;23(9):5031. doi:10.3390/ijms23095031. PMID:35563429.
- Roy D, Sreekanth D, Pawar D, Mahawar H, Barman KK. Phytoremediation of arsenic contaminated water using aquatic, semi-aquatic and submerged weeds. In: IntechOpen; 2001. doi:10.5772/intechopen.98961.
- Limmer M, Burken J. Phytovolatilization of organic contaminants. Environ Sci Technol. 2016;50(13). doi:10.1021/acs.est.5b04113.
- Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ. Phytoremediation of soil metals. Curr Opin Biotechnol. 1997;8(3):279-84. doi:10.1016/S0958-1669(97)80004-3.
- Ghosh A, Singh V, Dey K, Patel M, Pal A. Phytoremediation: A cost-effective tool for solid waste management. In: Baskar C, et al., editors. Handbook of Solid Waste Management. Singapore: Springer; 2021. p.1–30. doi:10.1007/978-981-15-7525-9_47-1.
- Singh BJ, Chakraborty A, Sehgal R. A Systematic Review of Industrial Wastewater Management: Evaluating Challenges and Enablers. J Environ Manage. 2023 Oct;348(3):119230. doi:10.1016/j.jenvman.2023.119230
- Moses KD. Review Paper on Industrial Wastewater Treatment Processes. Int J Nigeria. 2016;1(2):1–18.
- Gaonkar GV, Krishna G. An Analytic Comparison between Different Countries Solid Waste Management. JETIR. 2019 Mar;6(3):44–51. Available from: www.jetir.org
- Diaconu LI, Covaliu-Mierlă CI, Păunescu O, Covaliu LD, Iovu H, Paraschiv G. Phytoremediation of Wastewater Containing Lead and Manganese Ions Using Algae. Biology (Basel). 2023;12(6):773. doi:10.3390/biology12060773
- Jain P, Andotra A, Aziz A, Kaur P, Mahajan A, Kumar A. Phytoremediation – A Miracle Technique for Waste Water Treatment. Res J Pharm Technol. 2019;12(4):2009–16. doi:10.5958/0974-360X.2019.00341.X
- Guerra R. WATER ANALYSIS | Industrial Effluents. In: Worsfold P, Townshend A, Poole C, editors. Encyclopedia of Analytical Science. 2nd ed. Elsevier; 2005. p. 289–99. doi:10.1016/B0-12-369397-7/00111-4
- Khan AU, Nawaz A, Abdul W, Muhammad I, Doaa Z. Phytoremediation of Pollutants from Wastewater: A Concise Review. Open Life Sci. 2022 May 13;17(1):488–96. doi:10.1515/biol-2022-0056
- Evans O, Jackline N, Sylvia M, Daisy J. Heavy Metals in Wastewater Effluent: Causes, Effects, and Removal Technologies. In: Trace Metals in the Environment. IntechOpen; 2023. doi:10.5772/intechopen.1001452
- Calheiros CSC, Rangel AOSS, Castro PML. Constructed Wetland Systems Vegetated with Different Plants Applied to the Treatment of Tannery Wastewater. Water Res. 2007 Apr;41(8):1790–8.
- Sri Lakashmi K, Reddy MA. Wastewater – An Overview. Int J Contemp Res Rev. 2017 Aug;8(8):SC 20254–62. doi:10.15520/ijcrr/2017/8/08/287
- Kesari KK, Soni R, Jamal QMS, Tripathi P, Lal JA, Jha NK, et al. Wastewater Treatment and Reuse: a Review of its Applications and Health Implications. Water Air Soil Pollut. 2021 May 10;232(5):208. doi:10.1007/s11270-021-05154-8
- Waqas S, Harun NY, Sambudi NS, Bilad MR, Abioye KJ, Ali A, et al. A Review of Rotating Biological Contactors for Wastewater Treatment. Water (Basel). 2023;15(10):1913. doi:10.3390/w15101913
- Brown E, Skougstad MW, Fishman MJ. Method for Collection and Analysis of Water Sample for Dissolved Minerals and Gases. US Dept Interior; 1974. Book No. 5.
- American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater. 23rd ed. Washington, DC: APHA; 2017.
- Sharma S, Bhattacharya A. Drinking Water Contamination and Treatment Techniques. Appl Water Sci. 2017;7:1043–67. doi:10.1007/s13201-016-0455-7
- Prasad M, Freitas H. Metal Hyperaccumulation in Plants: Biodiversity Prospecting for Phytoremediation Technology. Electron J Biotechnol. 2003 Dec 15;6(3). doi:10.2225/vol6-issue3-fulltext-6
- Alves ARA, Yin Q, Oliveira RS, Silva EF, Novo LAB. Plant Growth-Promoting Bacteria in Phytoremediation of Metal-polluted Soils: Current Knowledge and Future Directions. Sci Total Environ. 2022 Sep 10;838(4):156435. doi:10.1016/j.scitotenv.2022.156435
- World Health Organization. Guidelines for Drinking-water Quality: Fourth Edition Incorporating the First and Second Addenda. Geneva: WHO; 2022. Chapter 10: Acceptability Aspects: Taste, Odour and Appearance. Available from: https://www.ncbi.nlm.nih.gov/books/NBK579463
- Kumar R, Kumar A. WATER ANALYSIS | Biochemical Oxygen Demand. In: Worsfold P, Townshend A, Poole C, editors. Encyclopedia of Analytical Science. 2nd ed. Elsevier; 2005. p. 315–24. doi:10.1016/B0-12-369397-7/00662-2
- Wojnárovits L, Homlok R, Kovács K, Tegze A, Takács E. Wastewater Characterization: Chemical Oxygen Demand or Total Organic Carbon Content Measurement? Molecules. 2024 Jan 14;29(2):405. doi:10.3390/molecules29020405
- World Health Organization. Guidelines for Drinking-water Quality. 4th ed. Geneva: WHO; 2011. ISBN: 978-9241548151.
- Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y. Guidelines and Standards. In: Fluoride in Drinking-water. Geneva: World Health Organization; 2006. p. 37–39. ISBN: 9241563192.
- Masime JO. Analysis of the Levels of Arsenic, Nitrate, Nitrite and Phosphate in Home Made Brews, Spirits, Tap Water and in Raw Materials in Nairobi County [MST thesis]. Nairobi: Technical University of Kenya; 2016.
- Soceanu A, Dobrinas S, Dumitrescu CI, Manea N, Sirbu A, Popescu V, Vizitiu G. Physico-Chemical Parameters and Health Risk Analysis of Groundwater Quality. Appl Sci (Basel). 2021 May;11:4775. doi:10.3390/app11114775

International Journal of Pollution: Prevention & Control
| Volume | 03 |
| 01 | |
| Received | 08/04/2025 |
| Accepted | 25/05/2025 |
| Published | 02/06/2025 |
| Publication Time | 55 Days |
Login
PlumX Metrics
