This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.
Ahmed Abubakar Aliyu,
- Faculty, Department of Secure Computing, College of Computing Engineering and Sciences, Kaduna, Nigeria.
Abstract
The emergence of blockchain technology has revolutionized various industries, including the Internet of Things (IoT), by providing a decentralized and secure platform for data management and transaction processing. However, securing IoT devices and networks remains a significant challenge due to inherent vulnerabilities and the increasing sophistication of cyberattacks. Blockchain-based security approaches have shown promise in addressing these challenges, yet their adoption is hindered by a lack of comprehensive taxonomy and systematic studies on their architectural design and effectiveness. A standardized taxonomy for blockchain-based security is essential for effectively comparing and evaluating different solutions, facilitating the identification of the most suitable approaches for specific IoT scenarios. Additionally, systematic studies on the architectural design of these security approaches are crucial for understanding the trade-offs between security, performance, and scalability. Empirical evaluations are needed to rigorously assess the effectiveness of blockchain-based security solutions against various attack vectors and performance benchmarks, guiding their optimization for IoT applications. Addressing these gaps in the current literature is critical for advancing the adoption and effectiveness of blockchain-based security approaches in the IoT domain. This paper proposes a comprehensive taxonomy, systematic architectural studies, and empirical evaluations to provide a solid foundation for selecting, designing, and implementing secure and efficient blockchain-based solutions tailored to the specific needs of IoT applications. These efforts will enhance the security, performance, and scalability of IoT systems, fostering greater confidence in blockchain technology’s role in securing the IoT ecosystem.
Keywords: Cybersecurity, internet of things, blockchain technology, intrusion detection systems.
[This article belongs to Trends in Electrical Engineering ]
Ahmed Abubakar Aliyu. Advancing IoT Security through Blockchain-based Approaches. Trends in Electrical Engineering. 2025; 15(01):-.
Ahmed Abubakar Aliyu. Advancing IoT Security through Blockchain-based Approaches. Trends in Electrical Engineering. 2025; 15(01):-. Available from: https://journals.stmjournals.com/tee/article=2025/view=194512
References
[1] R. Pandey, S. Goundar, and S. Fatima, Distributed Computing to Blockchain: Architecture, Technology, and Applications. Elsevier, 2023.
[2] S. Singh, “Consensus algorithms in blockchain technology: A comparative study,” Asian J. Multidimens. Res., vol. 11, no. 10, pp. 43–48, 2022, doi: 10.5958/2278-4853.2022.00238.5.
[3] A. S. Yadav, N. Singh, and D. S. Kushwaha, “Evolution of Blockchain and consensus mechanisms & its real-world applications,” Multimed. Tools Appl., vol. 82, no. 22, pp. 34363–34408, Sep. 2023, doi: 10.1007/s11042-023-14624-6.
[4] D. Rushita, K. Sood, and U. S. Yadav, “Cryptocurrency and Digital Money in the New Era,” in Digital Transformation, Strategic Resilience, Cyber Security and Risk Management, vol. 111B, S. Grima, E. Thalassinos, G. Georgiana Noja, T. V. Stamataopoulos, T. Vasiljeva, and T. Volkova, Eds., in Contemporary Studies in Economic and Financial Analysis, vol. 111B. , Emerald Publishing Limited, 2023, pp. 179–190. doi: 10.1108/S1569-37592023000111B013.
[5] S. K. Panda, A. R. Sathya, and S. Das, “Bitcoin: Beginning of the Cryptocurrency Era,” in Recent Advances in Blockchain Technology: Real-World Applications, S. K. Panda, V. Mishra, S. P. Dash, and A. K. Pani, Eds., in Intelligent Systems Reference Library. , Cham: Springer International Publishing, 2023, pp. 25–58. doi: 10.1007/978-3-031-22835-3_2.
[6] E. A, “A Revolutionary Impact on Cryptocurrency,” in Emerging Insights on the Relationship Between Cryptocurrencies and Decentralized Economic Models, IGI Global, 2023, pp. 183–197. doi: 10.4018/978-1-6684-5691-0.ch012.
[7] H. Taherdoost, “Blockchain and Machine Learning: A Critical Review on Security,” Information, vol. 14, no. 5, p. 295, May 2023, doi: 10.3390/info14050295.
[8] O. Ajayi and T. Saadawi, “Blockchain-Based Architecture for Secured Cyber-Attack Features Exchange,” in 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), Aug. 2020, pp. 100–107. doi: 10.1109/CSCloud-EdgeCom49738.2020.00025.
[9] K. N and S. M. J S, “BRDO: Blockchain Assisted Intrusion Detection Using Optimized Deep Stacked Network,” Cybern. Syst., pp. 1–22, Feb. 2023, doi: 10.1080/01969722.2023.2175153.
[10] N. Sapra, I. Shaikh, and A. Dash, “Impact of Proof of Work (PoW)-Based Blockchain Applications on the Environment: A Systematic Review and Research Agenda,” J. Risk Financ. Manag., vol. 16, no. 4, Art. no. 4, Apr. 2023, doi: 10.3390/jrfm16040218.
[11] P. Peng, S. Ji, Z. Tian, H. Jiang, W. Zheng, and X. Zhang, “Locality Sensitive Hashing for Optimizing Subgraph Query Processing in Parallel Computing Systems,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach CA USA: ACM, Aug. 2023, pp. 1885–1896. doi: 10.1145/3580305.3599419.
[12] N. Balani and P. Chavan, “Design of heuristic model to improve blockchain-based sidechain configuration,” Int. J. Comput. Sci. Eng., vol. 26, no. 4, pp. 372–384, Jan. 2023, doi: 10.1504/IJCSE.2023.132154.
[13] Y. Zhang, M. Zhao, T. Li, Y. Wang, and T. Liang, “Achieving optimal rewards in cryptocurrency stubborn mining with state transition analysis,” Inf. Sci., vol. 625, pp. 299–313, May 2023, doi: 10.1016/j.ins.2022.12.093.
[14] S. Matsuo et al., Eds., Financial Cryptography and Data Security. FC 2022 International Workshops: CoDecFin, DeFi, Voting, WTSC, Grenada, May 6, 2022, Revised Selected Papers, vol. 13412. in Lecture Notes in Computer Science, vol. 13412. Cham: Springer International Publishing, 2023. doi: 10.1007/978-3-031-32415-4.
[15] H. Arslanian, The Book of Crypto: The Complete Guide to Understanding Bitcoin, Cryptocurrencies and Digital Assets. Cham: Springer International Publishing, 2022. doi: 10.1007/978-3-030-97951-5.
[16] G. Sun, M. Jiang, X. Z. Khooi, Y. Li, and J. Li, “NeoBFT: Accelerating Byzantine Fault Tolerance Using Authenticated In-Network Ordering,” in Proceedings of the ACM SIGCOMM 2023 Conference, New York NY USA: ACM, Sep. 2023, pp. 239–254. doi: 10.1145/3603269.3604874.
[17] Z. Chen, O. M. Gul, and B. Kantarci, “Practical Byzantine Fault Tolerance Based Robustness for Mobile Crowdsensing,” Distrib. Ledger Technol. Res. Pract., vol. 2, no. 2, pp. 1–24, Jun. 2023, doi: 10.1145/3580392.
[18] S. Ahmadjee, C. Mera-Gómez, R. Bahsoon, and R. Kazman, “A Study on Blockchain Architecture Design Decisions and Their Security Attacks and Threats,” ACM Trans. Softw. Eng. Methodol., vol. 31, no. 2, pp. 1–45, Apr. 2022, doi: 10.1145/3502740.
[19] R. Chaganti, V. Varadarajan, V. S. Gorantla, T. R. Gadekallu, and V. Ravi, “Blockchain-Based Cloud-Enabled Security Monitoring Using Internet of Things in Smart Agriculture,” Future Internet, vol. 14, no. 9, Art. no. 9, Sep. 2022, doi: 10.3390/fi14090250.
[20] A. Fujihara, “Theoretical Considerations on Bitcoin Scalability Problem and Block Size Distribution,” in Proceedings of Blockchain Kaigi 2022 (BCK22), vol. 40, in JPS Conference Proceedings, no. 40, vol. 40. , Journal of the Physical Society of Japan, 2023. doi: 10.7566/JPSCP.40.011007.
[21] V. R. Vaddadi, P. Vardhan Raj Annepu, N. Gollapalli, A. Challa, S. B. Andhavarapu, and P. Kumar Botta, “Exploiting Cyber Threats And Protecting Cryptocurrencies Toward Bitcoin Exchanges,” in 2023 5th Biennial International Conference on Nascent Technologies in Engineering (ICNTE), Jan. 2023, pp. 1–6. doi: 10.1109/ICNTE56631.2023.10146649.
[22] A. Goel and G. Suseela, “A Step towards Blockchain Scalability Resolution,” Adv. Sci. Technol., vol. 124, pp. 635–643, 2023, doi: 10.4028/p-6287yh.
[23] C. E. Castellon, T. Khatib, S. Roy, A. Dutta, O. P. Kreidl, and L. Bölöni, “Energy-Efficient Blockchain-Enabled Multi-Robot Coordination for Information Gathering: Theory and Experiments,” Electronics, vol. 12, no. 20, Art. no. 20, Jan. 2023, doi: 10.3390/electronics12204239.
[24] F. Wang, Y. Lu, Q. Zhang, Y. Liu, L. Liu, and Z. Zhang, “SoK: Research status and challenges of blockchain smart contracts,” in Proceedings of the 5th ACM International Symposium on Blockchain and Secure Critical Infrastructure, in BSCI ’23. New York, NY, USA: Association for Computing Machinery, Sep. 2023, pp. 145–147. doi: 10.1145/3594556.3594620.
[25] G. C. Velasco, N. A. P. Vaz, and S. T. Carvalho, “Challenges and Opportunities in Smart Contract Development on the Ethereum Virtual Machine: A Systematic Literature Review,” in Workshop em Blockchain: Teoria, Tecnologias e Aplicações (WBlockchain), SBC, May 2023, pp. 15–28. doi: 10.5753/wblockchain.2023.756.
[26] H. Chu, P. Zhang, H. Dong, Y. Xiao, S. Ji, and W. Li, “A survey on smart contract vulnerabilities: Data sources, detection and repair,” Inf. Softw. Technol., vol. 159, p. 107221, Jul. 2023, doi: 10.1016/j.infsof.2023.107221.
[27] A. Junaid, A. Nawaz, M. F. Usmani, R. Verma, and N. Dhanda, “Analyzing the Performance of a DAPP Using Blockchain 3.0,” in 2023 13th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Jan. 2023, pp. 209–213. doi: 10.1109/Confluence56041.2023.10048887.
[28] S. A. Wright, “DAOs & ADSs,” in 2023 IEEE 15th International Symposium on Autonomous Decentralized System (ISADS), Mar. 2023, pp. 1–6. doi: 10.1109/ISADS56919.2023.10091973.
[29] M. Imamura and K. Omote, “Analysis of the Features and Structure Behind Availability in Blockchain Using Altcoin,” IEEE Access, vol. 10, pp. 98683–98699, 2022, doi: 10.1109/ACCESS.2022.3204697.
[30] A. Sasikumar et al., “A Decentralized Resource Allocation in Edge Computing for Secure IoT Environments,” IEEE Access, vol. 11, pp. 117177–117189, 2023, doi: 10.1109/ACCESS.2023.3325056.
[31] Bhavna Galhotra, Devesh Lowe, and Sunny Seth, “Blockchain technology in education: The perspective, challenges, and concerns,” Open Access Res. J. Eng. Technol., vol. 5, no. 1, pp. 039–046, Sep. 2023, doi: 10.53022/oarjet.2023.5.1.0075.
[32] C. G. Kamau and A. Yavuzaslan, “CryptoAudit: Nature, requirements and challenges of Blockchain transactions audit,” Afr. J. Commer. Stud., vol. 3, no. 2, Art. no. 2, Oct. 2023, doi: 10.59413/ajocs/v3.i2.3.
[33] G. Caldarelli, “Before Ethereum. The Origin and Evolution of Blockchain Oracles,” IEEE Access, vol. 11, pp. 50899–50917, 2023, doi: 10.1109/ACCESS.2023.3279106.
[34] A. Hamdi, L. Fourati, and S. Ayed, “Vulnerabilities and attacks assessments in blockchain 1.0, 2.0 and 3.0: tools, analysis and countermeasures,” Int. J. Inf. Secur., Oct. 2023, doi: 10.1007/s10207-023-00765-0.
[35] Q. Wang et al., “Optimal Selfish Mining-based Denial-of-Service Attack,” IEEE Trans. Inf. Forensics Secur., pp. 1–1, 2023, doi: 10.1109/TIFS.2023.3326386.
[36] J. S. Notland, M. Nowostawski, and J. Li, “Runtime Evolution of Bitcoin’s Consensus Rules,” IEEE Trans. Softw. Eng., vol. 49, no. 9, pp. 4477–4495, Sep. 2023, doi: 10.1109/TSE.2023.3304851.
[37] P. Rani, R. K. Sachan, and S. Kukreja, “A systematic study on blockchain technology in education: initiatives, products, applications, benefits, challenges and research direction,” Computing, Oct. 2023, doi: 10.1007/s00607-023-01228-z.
[38] A. K. Tyagi, S. Dananjayan, D. Agarwal, and H. F. Thariq Ahmed, “Blockchain—Internet of Things Applications: Opportunities and Challenges for Industry 4.0 and Society 5.0,” Sensors, vol. 23, no. 2, Art. no. 2, Jan. 2023, doi: 10.3390/s23020947.
[39] X. Tao et al., “Enhancing BIM security in emergency construction projects using lightweight blockchain-as-a-service,” Autom. Constr., vol. 150, p. 104846, Jun. 2023, doi: 10.1016/j.autcon.2023.104846.
[40] A. Kumar Jha, “Hybrid Consensus Mechanism (HCM) : Achieving Efficient and Secure Consensus in Blockchain Networks,” Apr. 08, 2023, Rochester, NY: 4413290. doi: 10.2139/ssrn.4413290.
[41] T. Zhang and Z. Huang, “FPoR: Fair proof-of-reputation consensus for blockchain,” ICT Express, vol. 9, no. 1, pp. 45–50, Feb. 2023, doi: 10.1016/j.icte.2022.11.007.
[42] J. Tang, X. Lu, Y. Xiang, C. Shi, and J. Gu, “Blockchain search engine: Its current research status and future prospect in Internet of Things network,” Future Gener. Comput. Syst., vol. 138, pp. 120–141, Jan. 2023, doi: 10.1016/j.future.2022.08.008.
[43] S. S. and D. Motwani, “Modelling blockchain technology-driven practices to be integrated in fintech for creating reliable business processes,” Scand. J. Inf. Syst., vol. 35, no. 1, Art. no. 1, Mar. 2023.
[44] A. A. Aliyu, “Improving Cloud Data Security by hybridization of Zero-Knowledge Proof and Time-Based One-Time Password,” KASU J. Math. Sci. KJMS, vol. 1, no. 2, pp. 116–126, Dec. 2020.
[45] M. Abu-Faraj et al., “Protecting Digital Images Using Keys Enhanced by 2D Chaotic Logistic Maps,” Cryptography, vol. 7, no. 2, Art. no. 2, Jun. 2023, doi: 10.3390/cryptography7020020.
[46] Lin G. a. N., Jianbing L. I., Kunlong Y., and Xuesong W., “Research on the motion and scattering characteristics of intermittent long chaff,” Chin. J. RADIO Sci., vol. 38, no. 1, pp. 114–122, 2023, doi: 10.12265/j.cjors.2022005.
[47] R. Solomon, R. Weber, and G. Almashaqbeh, “smartFHE: Privacy-Preserving Smart Contracts from Fully Homomorphic Encryption,” in 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P), Jul. 2023, pp. 309–331. doi: 10.1109/EuroSP57164.2023.00027.
[48] M. Krichen, “Strengthening the Security of Smart Contracts through the Power of Artificial Intelligence,” Computers, vol. 12, no. 5, Art. no. 5, May 2023, doi: 10.3390/computers12050107.
[49] S. Goel, A. Verma, and V. K. Jain, “CRA-RPL: A Novel Lightweight challenge-Response authentication-based technique for securing RPL against dropped DAO attacks,” Comput. Secur., vol. 132, p. 103346, Sep. 2023, doi: 10.1016/j.cose.2023.103346.
[50] D. He, R. Wu, X. Li, S. Chan, and M. Guizani, “Detection of Vulnerabilities of Blockchain Smart Contracts,” IEEE Internet Things J., vol. 10, no. 14, pp. 12178–12185, Jul. 2023, doi: 10.1109/JIOT.2023.3241544.
[51] A. Salem Balobaid, Y. H. Alagrash, A. Hussein Fadel, and J. N. Hasoon, “Modeling of blockchain with encryption based secure education record management system,” Egypt. Inform. J., vol. 24, no. 4, p. 100411, Dec. 2023, doi: 10.1016/j.eij.2023.100411.
[52] G. Bovenzi, G. Aceto, V. Persico, and A. Pescapé, “Blockchain Performance in Industry 4.0: Drivers, use cases, and future directions,” J. Ind. Inf. Integr., vol. 36, p. 100513, Dec. 2023, doi: 10.1016/j.jii.2023.100513.
[53] N. Peyrone and D. Wichadakul, “A formal model for blockchain-based consent management in data sharing,” J. Log. Algebr. Methods Program., vol. 134, p. 100886, Aug. 2023, doi: 10.1016/j.jlamp.2023.100886.
[54] G. Sharma and P. Gandhi, “A framework of secured system using blockchain in healthcare industry,” presented at the RECENT ADVANCES IN SCIENCES, ENGINEERING, INFORMATION TECHNOLOGY & MANAGEMENT, Jaipur, India, 2023, p. 020003. doi: 10.1063/5.0154721.
[55] E. Toufaily, “An integrative model of trust toward crypto-tokens applications: A customer perspective approach,” Digit. Bus., vol. 2, no. 2, p. 100041, Jan. 2022, doi: 10.1016/j.digbus.2022.100041.
[56] A. G. Gad, D. T. Mosa, L. Abualigah, and A. A. Abohany, “Emerging Trends in Blockchain Technology and Applications: A Review and Outlook,” J. King Saud Univ. – Comput. Inf. Sci., vol. 34, no. 9, pp. 6719–6742, Oct. 2022, doi: 10.1016/j.jksuci.2022.03.007.
[57] A. I. Sanka and R. C. C. Cheung, “A systematic review of blockchain scalability: Issues, solutions, analysis and future research,” J. Netw. Comput. Appl., vol. 195, p. 103232, Dec. 2021, doi: 10.1016/j.jnca.2021.103232.
[58] L. Marchesi, M. Marchesi, R. Tonelli, and M. I. Lunesu, “A blockchain architecture for industrial applications,” Blockchain Res. Appl., vol. 3, no. 4, p. 100088, Dec. 2022, doi: 10.1016/j.bcra.2022.100088.
[59] P. S. Akshatha and S. M. Dilip Kumar, “MQTT and blockchain sharding: An approach to user-controlled data access with improved security and efficiency,” Blockchain Res. Appl., p. 100158, Oct. 2023, doi: 10.1016/j.bcra.2023.100158.
[60] X. Jia, L. Wang, K. Cheng, P. Jing, and X. Song, “A blockchain-based privacy-preserving and collusion-resistant scheme (PPCR) for double auctions,” Digit. Commun. Netw., May 2023, doi: 10.1016/j.dcan.2023.05.002.
[61] R. Liu, X. Yu, Y. Yuan, and Y. Ren, “BTDSI: A blockchain-based trusted data storage mechanism for Industry 5.0,” J. King Saud Univ. – Comput. Inf. Sci., vol. 35, no. 8, p. 101674, Sep. 2023, doi: 10.1016/j.jksuci.2023.101674.
[62] T. Guimarães, R. Duarte, B. Pinheiro, D. Faria, P. Gomes, and M. F. Santos, “Blockchain Analytics – Real-time Log Management in Healthcare,” Procedia Comput. Sci., vol. 201, pp. 702–707, Jan. 2022, doi: 10.1016/j.procs.2022.03.094.
[63] V. Malik et al., “Building a Secure Platform for Digital Governance Interoperability and Data Exchange Using Blockchain and Deep Learning-Based Frameworks,” IEEE Access, vol. 11, pp. 70110–70131, 2023, doi: 10.1109/ACCESS.2023.3293529.
[64] O. H. Abdulganiyu, T. Ait Tchakoucht, and Y. K. Saheed, “A systematic literature review for network intrusion detection system (IDS),” Int. J. Inf. Secur., vol. 22, no. 5, pp. 1125–1162, Oct. 2023, doi: 10.1007/s10207-023-00682-2.
[65] Safana Hyder Abbas, Wedad Abdul Khuder Naser, and Amal Abbas Kadhim, “Subject review: Intrusion Detection System (IDS) and Intrusion Prevention System (IPS),” Glob. J. Eng. Technol. Adv., vol. 14, no. 2, pp. 155–158, Feb. 2023, doi: 10.30574/gjeta.2023.14.2.0031.
[66] X. M. Han-Vanbastelaer, “Sometimes, You Aren’t What You Do: Mimicry Attacks against Provenance Graph Host Intrusion Detection Systems,” Xueyuan Vanbastelaer. Accessed: Mar. 15, 2023. [Online]. Available: https://www.vanbastelaer.com/publication/evasion/
[67] A. A. Aliyu, “Information Security: An Effective Tool for Sustainable Nigerian National Security and Development,” Conf. Conf. Pap. Present. 1st Annu. Int. Conf. Fitayanul Islam Niger. Abuja Niger., Mar. 2022, Accessed: Mar. 21, 2023. [Online]. Available: https://www.researchgate.net/publication/359369635_Information_Security_An_Effective_Tool_for_Sustainable_Nigerian_National_Security_and_Development
[68] I. Riley, A. Marshall, L. Quirk, and R. Gamble, An Architectural Design to Address the Impact of Adaptations on Intrusion Detection Systems. 2023. Accessed: Mar. 15, 2023. [Online]. Available: https://hdl.handle.net/10125/103466
[69] “Understanding the 5 Types of Intrusion Detection Systems,” Helixstorm. Accessed: Mar. 13, 2023. [Online]. Available: https://www.helixstorm.com/blog/types-of-intrusion-detection-systems/
[70] C. Wu and S. Chen, “A Heuristic Intrusion Detection Approach Using Deep Learning Model,” in 2023 International Conference on Information Networking (ICOIN), Jan. 2023, pp. 438–442. doi: 10.1109/ICOIN56518.2023.10049024.
[71] “What is a Signature and How Can I detect it?” Accessed: Mar. 15, 2023. [Online]. Available: https://home.sophos.com/en-us/security-news/2020/what-is-a-signature
[72] techslang, “What is Signature-Based Detection? — Techslang,” Techslang — Tech Explained in Simple Terms. Accessed: Mar. 15, 2023. [Online]. Available: https://www.techslang.com/definition/what-is-signature-based-detection/
[73] S. Al-E’mari, M. Anbar, Y. Sanjalawe, S. Manickam, and I. Hasbullah, “Intrusion Detection Systems Using Blockchain Technology: A Review, Issues and Challenges,” Comput. Syst. Sci. Eng., vol. 40, no. 1, pp. 87–112, 2022, doi: 10.32604/csse.2022.017941.
[74] M. Bhavsar, K. Roy, J. Kelly, and O. Olusola, “Anomaly-based intrusion detection system for IoT application,” Discov. Internet Things, vol. 3, no. 1, p. 5, May 2023, doi: 10.1007/s43926-023-00034-5.
[75] S. Alem, D. Espes, L. Nana, E. Martin, and F. De Lamotte, “A novel bi-anomaly-based intrusion detection system approach for industry 4.0,” Future Gener. Comput. Syst., vol. 145, pp. 267–283, Aug. 2023, doi: 10.1016/j.future.2023.03.024.
[76] M. Landauer, M. Wurzenberger, F. Skopik, W. Hotwagner, and G. Höld, “AMiner: A Modular Log Data Analysis Pipeline for Anomaly-based Intrusion Detection,” Digit. Threats Res. Pract., vol. 4, no. 1, p. 12:1-12:16, Mar. 2023, doi: 10.1145/3567675.
[77] A. Chakraborty, A. Biswas, and A. K. Khan, “Artificial Intelligence for Cybersecurity: Threats, Attacks and Mitigation,” in Artificial Intelligence for Societal Issues, A. Biswas, V. B. Semwal, and D. Singh, Eds., in Intelligent Systems Reference Library. , Cham: Springer International Publishing, 2023, pp. 3–25. doi: 10.1007/978-3-031-12419-8_1.
[78] V. S. D. Priya and S. S. Chakkaravarthy, “Containerized cloud-based honeypot deception for tracking attackers,” Sci. Rep., vol. 13, no. 1, Art. no. 1, Jan. 2023, doi: 10.1038/s41598-023-28613-0.
[79] A. Javadpour, P. Pinto, F. Ja’fari, and W. Zhang, “DMAIDPS: a distributed multi-agent intrusion detection and prevention system for cloud IoT environments,” Clust. Comput., vol. 26, no. 1, pp. 367–384, Feb. 2023, doi: 10.1007/s10586-022-03621-3.
[80] S. Kably, T. Benbarrad, N. Alaoui, and M. Arioua, “Multi-Zone-Wise Blockchain Based Intrusion Detection and Prevention System for IoT Environment,” Comput. Mater. Contin., vol. 74, no. 1, pp. 253–278, 2023, doi: 10.32604/cmc.2023.032220.
[81] E. S. Babu et al., “Blockchain-based Intrusion Detection System of IoT urban data with device authentication against DDoS attacks,” Comput. Electr. Eng., vol. 103, p. 108287, Oct. 2022, doi: 10.1016/j.compeleceng.2022.108287.
[82] D. Singh, “Internet of Things,” in Factories of the Future, John Wiley & Sons, Ltd, 2023, pp. 195–227. doi: 10.1002/9781119865216.ch9.
[83] A. Falayi, Q. Wang, W. Liao, and W. Yu, “Survey of Distributed and Decentralized IoT Securities: Approaches Using Deep Learning and Blockchain Technology,” Future Internet, vol. 15, no. 5, Art. no. 5, May 2023, doi: 10.3390/fi15050178.
[84] W. Dong, H. Wang, and R. Wang, “A study on the technique for recognizing IoT devices using FTP messages,” in 3rd International Conference on Internet of Things and Smart City (IoTSC 2023), SPIE, Jun. 2023, pp. 190–195. doi: 10.1117/12.2683980.
[85] O. A. Mahdi, A. Alazab, S. Bevinakoppa, N. Ali, and A. Khraisat, “Enhancing IoT Intrusion Detection System Performance with the Diversity Measure as a Novel Drift Detection Method,” in 2023 9th International Conference on Information Technology Trends (ITT), May 2023, pp. 50–54. doi: 10.1109/ITT59889.2023.10184268.
[86] V. A. Memos, K. E. Psannis, and Z. Lv, “A Secure Network Model Against Bot Attacks in Edge-Enabled Industrial Internet of Things,” IEEE Trans. Ind. Inform., vol. 18, no. 11, pp. 7998–8006, Nov. 2022, doi: 10.1109/TII.2022.3162837.
[87] K. Taha, “Proactive Measures for Cyber-Physical Systems Cybersecurity,” in 2023 IEEE International Conference on Cyber Security and Resilience (CSR), Jul. 2023, pp. 353–358. doi: 10.1109/CSR57506.2023.10224929.
[88] E. Municio, S. Latré, and J. M. Marquez-Barja, “Extending Network Programmability to the Things Overlay Using Distributed Industrial IoT Protocols,” IEEE Trans. Ind. Inform., vol. 17, no. 1, pp. 251–259, Jan. 2021, doi: 10.1109/TII.2020.2972613.
[89] V. Thomas, S. Terence, B. Agrawal, and J. Immaculate, “Internet of Things Control Center,” in 2023 4th International Conference on Signal Processing and Communication (ICSPC), Mar. 2023, pp. 225–228. doi: 10.1109/ICSPC57692.2023.10125704.
[90] P. Wasnik and N. Chavhan, “A Review Paper on Designing Intelligent Intrusion Detection System Using Deep Learning,” in 2023 11th International Conference on Emerging Trends in Engineering & Technology – Signal and Information Processing (ICETET – SIP), Apr. 2023, pp. 1–6. doi: 10.1109/ICETET-SIP58143.2023.10151563.
[91] S. Zhang and D. Cao, “A blockchain-based provably secure anonymous authentication for edge computing-enabled IoT,” J. Supercomput., Oct. 2023, doi: 10.1007/s11227-023-05696-0.
[92] D. Ameyed, F. Jaafar, F. Petrillo, and M. Cheriet, “Quality and Security Frameworks for IoT-Architecture Models Evaluation,” SN Comput. Sci., vol. 4, no. 4, pp. 1–17, Jul. 2023, doi: 10.1007/s42979-023-01815-z.
[93] G. Paolone, D. Iachetti, R. Paesani, F. Pilotti, M. Marinelli, and P. Di Felice, “A Holistic Overview of the Internet of Things Ecosystem,” IoT, vol. 3, no. 4, Art. no. 4, Dec. 2022, doi: 10.3390/iot3040022.
[94] M. Aaqib, A. Ali, L. Chen, and O. Nibouche, “IoT trust and reputation: a survey and taxonomy,” J. Cloud Comput., vol. 12, no. 1, p. 42, Mar. 2023, doi: 10.1186/s13677-023-00416-8.
[95] N. A. Askar et al., “Forwarding Strategies for Named Data Networking Based IoT: Requirements, Taxonomy, and Open Research Challenges,” IEEE Access, vol. 11, pp. 78363–78383, 2023, doi: 10.1109/ACCESS.2023.3276713.
[96] R. Santos, G. Eggly, J. Gutierrez, and C. I. Chesñevar, “Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable Smart Cities,” Sustainability, vol. 15, no. 8, Art. no. 8, Jan. 2023, doi: 10.3390/su15086594.
[97] S. Alahmadi, P. Rojas, H. Idriss, and M. Bayoumi, “Taxonomy of Consumer and Industrial IoT,” in SoutheastCon 2023, Apr. 2023, pp. 418–424. doi: 10.1109/SoutheastCon51012.2023.10115217.
[98] N. M. Karie, N. M. Sahri, W. Yang, C. Valli, and V. R. Kebande, “A Review of Security Standards and Frameworks for IoT-Based Smart Environments,” IEEE Access, vol. 9, pp. 121975–121995, 2021, doi: 10.1109/ACCESS.2021.3109886.
[99] A. H. El-Kady, S. Halim, M. M. El-Halwagi, and F. Khan, “Analysis of safety and security challenges and opportunities related to cyber-physical systems,” Process Saf. Environ. Prot., vol. 173, pp. 384–413, May 2023, doi: 10.1016/j.psep.2023.03.012.
[100] V. Kampourakis, V. Gkioulos, and S. Katsikas, “A systematic literature review on wireless security testbeds in the cyber-physical realm,” Comput. Secur., vol. 133, p. 103383, Oct. 2023, doi: 10.1016/j.cose.2023.103383.
[101] D. Wang, J. Zhou, M. Masdari, S. N. Qasem, and B. T. Sayed, “Security in wireless body area networks via anonymous authentication: Comprehensive literature review, scheme classification, and future challenges,” Ad Hoc Netw., vol. 153, p. 103332, Feb. 2024, doi: 10.1016/j.adhoc.2023.103332.
[102] S. Z. Marshoodulla and G. Saha, “An approach towards removal of data heterogeneity in SDN-based IoT framework,” Internet Things, vol. 22, p. 100763, Jul. 2023, doi: 10.1016/j.iot.2023.100763.
[103] B. Kaur et al., “Internet of Things (IoT) security dataset evolution: Challenges and future directions,” Internet Things, vol. 22, p. 100780, Jul. 2023, doi: 10.1016/j.iot.2023.100780.
[104] A. Collaguazo, M. Villavicencio, and A. Abran, “An activity-based approach for the early identification and resolution of problems in the development of IoT systems in academic projects,” Internet Things, vol. 24, p. 100929, Dec. 2023, doi: 10.1016/j.iot.2023.100929.
[105] I. Makhdoom et al., “Detecting compromised IoT devices: Existing techniques, challenges, and a way forward,” Comput. Secur., vol. 132, p. 103384, Sep. 2023, doi: 10.1016/j.cose.2023.103384.
[106] M. A. Sami and T. A. Khan, “Forecasting failure rate of IoT devices: A deep learning way to predictive maintenance,” Comput. Electr. Eng., vol. 110, p. 108829, Sep. 2023, doi: 10.1016/j.compeleceng.2023.108829.
[107] E. Schiller, A. Aidoo, J. Fuhrer, J. Stahl, M. Ziörjen, and B. Stiller, “Landscape of IoT security,” Comput. Sci. Rev., vol. 44, p. 100467, May 2022, doi: 10.1016/j.cosrev.2022.100467.
[108] J. Gomez, E. F. Kfoury, J. Crichigno, and G. Srivastava, “A survey on network simulators, emulators, and testbeds used for research and education,” Comput. Netw., vol. 237, p. 110054, Dec. 2023, doi: 10.1016/j.comnet.2023.110054.
[109] F. Thabit, O. Can, A. O. Aljahdali, G. H. Al-Gaphari, and H. A. Alkhzaimi, “Cryptography Algorithms for Enhancing IoT Security,” Internet Things, vol. 22, p. 100759, Jul. 2023, doi: 10.1016/j.iot.2023.100759.
[110] R. H. Weber, “Internet of Things – New security and privacy challenges,” Comput. Law Secur. Rev., vol. 26, no. 1, pp. 23–30, Jan. 2010, doi: 10.1016/j.clsr.2009.11.008.
[111] S. D. Babar, P. N. Mahalle, N. R. Prasad, and R. Prasad, “Proposed on Device Capability based Authentication using AES-GCM for Internet of Things (IoT): 3rd Springer International ICST Conference on Security and Privacy in Mobile Information and Communication Systems,” Procedings 3rd Springer Int. ICST Conf. Secur. Priv. Mob. Inf. Commun. Syst. Mobisec 2011, 2011.
[112] E. Borgia, “The Internet of Things vision: Key features, applications and open issues,” Comput. Commun., vol. 54, pp. 1–31, Dec. 2014, doi: 10.1016/j.comcom.2014.09.008.
[113] S. Sicari, A. Rizzardi, D. Miorandi, and A. Coen-Porisini, “Internet of Things: Security in the Keys,” in Proceedings of the 12th ACM Symposium on QoS and Security for Wireless and Mobile Networks, in Q2SWinet ’16. New York, NY, USA: Association for Computing Machinery, Nov. 2016, pp. 129–133. doi: 10.1145/2988272.2988280.
[114] M. A. Khan and K. Salah, “IoT security: Review, blockchain solutions, and open challenges,” Future Gener. Comput. Syst., vol. 82, pp. 395–411, May 2018, doi: 10.1016/j.future.2017.11.022.
[115] L. Fotia, F. Delicato, and G. Fortino, “Trust in Edge-based Internet of Things Architectures: State of the Art and Research Challenges,” ACM Comput. Surv., vol. 55, no. 9, p. 182:1-182:34, Jan. 2023, doi: 10.1145/3558779.
[116] D. Barrera, C. Bellman, and P. Van Oorschot, “Security Best Practices: A Critical Analysis Using IoT as a Case Study,” ACM Trans. Priv. Secur., vol. 26, no. 2, p. 13:1-13:30, Mar. 2023, doi: 10.1145/3563392.
[117] M. Jouhari, N. Saeed, M.-S. Alouini, and E. M. Amhoud, “A Survey on Scalable LoRaWAN for Massive IoT: Recent Advances, Potentials, and Challenges,” IEEE Commun. Surv. Tutor., vol. 25, no. 3, pp. 1841–1876, 2023, doi: 10.1109/COMST.2023.3274934.
[118] M. S. Akhtar and T. Feng, “A Systemic Security and Privacy Review: Attacks and Prevention Mechanisms over IOT Layers,” EAI Endorsed Trans. Secur. Saf., vol. 8, no. 30, Aug. 2022, Accessed: Nov. 01, 2023. [Online]. Available: https://eudl.eu/doi/10.4108/eetss.v8i30.590
[119] V. Kumar and K. Paul, “Device Fingerprinting for Cyber-Physical Systems: A Survey,” ACM Comput. Surv., vol. 55, no. 14s, p. 302:1-302:41, Jul. 2023, doi: 10.1145/3584944.
[120] F. F. Ashrif, E. A. Sundararajan, R. Ahmad, M. K. Hasan, and E. Yadegaridehkordi, “Survey on the authentication and key agreement of 6LoWPAN: Open issues and future direction,” J. Netw. Comput. Appl., vol. 221, p. 103759, Jan. 2024, doi: 10.1016/j.jnca.2023.103759.
[121] D. Alkunidry, S. Alhuwaysi, and R. Alharbi, “Security Threads and IoT Security,” J. Comput. Commun., vol. 11, no. 9, Art. no. 9, Sep. 2023, doi: 10.4236/jcc.2023.119005.
[122] U. Ali et al., “Enhanced lightweight and secure certificateless authentication scheme (ELWSCAS) for Internet of Things environment,” Internet Things, vol. 24, p. 100923, Dec. 2023, doi: 10.1016/j.iot.2023.100923.
[123] P. M. Rao and B. D. Deebak, “A comprehensive survey on authentication and secure key management in internet of things: Challenges, countermeasures, and future directions,” Ad Hoc Netw., vol. 146, p. 103159, Jul. 2023, doi: 10.1016/j.adhoc.2023.103159.
[124] X. Meng et al., “A Novel Multi-Party Authentication Scheme for FCN-based MIoT Systems in Natural Language Processing Environment,” ACM Trans. Asian Low-Resour. Lang. Inf. Process., May 2023, doi: 10.1145/3590149.
[125] J. Chen et al., “DKSM: A Decentralized Kerberos Secure Service-Management Protocol for Internet of Things,” Internet Things, vol. 23, p. 100871, Oct. 2023, doi: 10.1016/j.iot.2023.100871.
[126] E. Malan, V. Peluso, A. Calimera, E. Macii, and P. Montuschi, “Automatic Layer Freezing for Communication Efficiency in Cross-Device Federated Learning,” IEEE Internet Things J., pp. 1–1, 2023, doi: 10.1109/JIOT.2023.3309691.
[127] P. More and S. Sakhare, “Context-Aware Device Classification and Clustering for Smarter and Secure Connectivity in Internet of Things,” EAI Endorsed Trans. Ind. Netw. Intell. Syst., vol. 10, no. 3, Oct. 2023, Accessed: Nov. 01, 2023. [Online]. Available: https://eudl.eu/doi/10.4108/eetinis.v10i3.3874
[128] S. M. Hosseini, J. Ferreira, and P. C. Bartolomeu, “Blockchain-Based Decentralized Identification in IoT: An Overview of Existing Frameworks and Their Limitations,” Electronics, vol. 12, no. 6, Art. no. 6, Jan. 2023, doi: 10.3390/electronics12061283.
[129] H. Foidl and M. Felderer, “An approach for assessing industrial IoT data sources to determine their data trustworthiness,” Internet Things, vol. 22, p. 100735, Jul. 2023, doi: 10.1016/j.iot.2023.100735.
[130] F. Ashrif, E. Sundarajan, R. Ahmed, and M. Hasan, “SLAE6: Secure and Lightweight Authenticated Encryption Scheme for 6LoWPAN Networks:,” in Proceedings of the 12th International Conference on Sensor Networks, Online Streaming, — Select a Country —: SCITEPRESS – Science and Technology Publications, 2023, pp. 67–78. doi: 10.5220/0011632200003399.
[131] J. Ellamathy, Securing LwM2M with Mbed TLS in Contiki-NG. 2023. Accessed: Nov. 01, 2023. [Online]. Available: https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-500539
[132] O. Gilles, D. Gracia Pérez, P.-A. Brameret, and V. Lacroix, “Securing IIoT communications using OPC UA PubSub and Trusted Platform Modules,” J. Syst. Archit., vol. 134, p. 102797, Jan. 2023, doi: 10.1016/j.sysarc.2022.102797.
[133] S. Rana, M. R. H. Mondal, and J. Kamruzzaman, “RBFK cipher: a randomized butterfly architecture-based lightweight block cipher for IoT devices in the edge computing environment,” Cybersecurity, vol. 6, no. 1, p. 3, Feb. 2023, doi: 10.1186/s42400-022-00136-7.
[134] N. Krishnamoorthy and S. Umarani, “Implementation and management of cloud security for industry 4.O – data using hybrid elliptical curve cryptography,” J. High Technol. Manag. Res., vol. 34, no. 2, p. 100474, Nov. 2023, doi: 10.1016/j.hitech.2023.100474.
[135] U. Devi and A. Jacob, “Cryptographic Validation of Lightweight Block ciphers and Hash Functions,” in 2023 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA), Sep. 2023, pp. 1–10. doi: 10.1109/PKIA58446.2023.10262450.
[136] M. A. Elsadig, “Detection of Denial-of-Service Attack in Wireless Sensor Networks: A Lightweight Machine Learning Approach,” IEEE Access, vol. 11, pp. 83537–83552, 2023, doi: 10.1109/ACCESS.2023.3303113.
[137] H. Alrubayyi, “Artificial Immune Systems for Detecting Unknown Malware in the IoT,” Feb. 2023, Accessed: Nov. 01, 2023. [Online]. Available: https://qmro.qmul.ac.uk/xmlui/handle/123456789/84686
[138] M. Hammad et al., “Security Framework for Network-Based Manufacturing Systems with Personalized Customization: An Industry 4.0 Approach,” Sensors, vol. 23, no. 17, Art. no. 17, Jan. 2023, doi: 10.3390/s23177555.
[139] D. Mohamed and O. Ismael, “Enhancement of an IoT hybrid intrusion detection system based on fog-to-cloud computing,” J. Cloud Comput., vol. 12, no. 1, p. 41, Mar. 2023, doi: 10.1186/s13677-023-00420-y.
[140] R. Qamar and B. A. Zardari, “A Study of Blockchain-Based Internet of Things,” Iraqi J. Comput. Sci. Math., vol. 4, no. 1, Art. no. 1, 2023, doi: 10.52866/ijcsm.2023.01.01.003.
[141] M. Zang, C. Zheng, L. Dittmann, and N. Zilberman, “Towards Continuous Threat Defense: In-Network Traffic Analysis for IoT Gateways,” IEEE Internet Things J., pp. 1–1, 2023, doi: 10.1109/JIOT.2023.3323771.
[142] X. Zhang, “Prediction of Cyberspace Security Data Based on the Markov Chain Model,” Appl. Math. Nonlinear Sci., vol. {“content-type”:”ahead-of-print”,”content”:0}, no. 0, Jun. 2023, doi: 10.2478/amns.2023.1.00434.
[143] D. M. M. Mena, “Blockchain-Based Security Framework for the Internet of Things and Home Networks,” Ph.D., 2021. Accessed: Nov. 01, 2023. [Online]. Available: https://www.proquest.com/docview/2838330313/abstract/8E92FAC47D9A4EFAPQ/1
[144] S. Ismail, H. Reza, H. K. Zadeh, and F. Vasefi, “A Blockchain-based IoT Security Solution Using Multichain,” in 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC), Mar. 2023, pp. 1105–1111. doi: 10.1109/CCWC57344.2023.10099128.
[145] Y. Chen et al., “Capability- & Blockchain-based Fine-grained and Flexible Access Control Model,” IEEE Netw., pp. 1–8, 2023, doi: 10.1109/MNET.127.2200414.
[146] C. Liu et al., “TBAC: A Tokoin-based Accountable Access Control Scheme for the Internet of Things,” IEEE Trans. Mob. Comput., pp. 1–16, 2023, doi: 10.1109/TMC.2023.3316622.
[147] F. Ghaffari, E. Bertin, N. Crespi, and J. Hatin, “Distributed ledger technologies for authentication and access control in networking applications: A comprehensive survey,” Comput. Sci. Rev., vol. 50, p. 100590, Nov. 2023, doi: 10.1016/j.cosrev.2023.100590.
[148] V. Gugueoth, S. Safavat, S. Shetty, and D. Rawat, “A review of IoT security and privacy using decentralized blockchain techniques,” Comput. Sci. Rev., vol. 50, p. 100585, Nov. 2023, doi: 10.1016/j.cosrev.2023.100585.
[149] C. Mu, T. Ding, M. Yang, Y. Huang, W. Jia, and X. Shen, “Peer-to-peer energy trading based on a hybrid blockchain system,” Energy Rep., vol. 9, pp. 124–128, Nov. 2023, doi: 10.1016/j.egyr.2023.09.123.
[150] M. Luo, J. Zhou, and P. Yang, “RATS: A regulatory anonymous transaction system based on blockchain,” J. Parallel Distrib. Comput., vol. 182, p. 104751, Dec. 2023, doi: 10.1016/j.jpdc.2023.104751.
[151] M. H. Tabatabaei, R. Vitenberg, and N. R. Veeraragavan, “Understanding blockchain: Definitions, architecture, design, and system comparison,” Comput. Sci. Rev., vol. 50, p. 100575, Nov. 2023, doi: 10.1016/j.cosrev.2023.100575.
[152] A. Khang, S. K. Gupta, S. Rani, and D. A. Karras, Smart Cities: IoT Technologies, Big Data Solutions, Cloud Platforms, and Cybersecurity Techniques. CRC Press, 2023.
[153] J. Sęk, P. Trojanowski, Ł. Gilewicz, B. Gapinski, and A. Evtuhov, “Implementation of Intelligent Transport Systems in an Urban Agglomeration: A Case Study,” in Advances in Design, Simulation and Manufacturing VI, V. Ivanov, J. Trojanowska, I. Pavlenko, E. Rauch, and J. Piteľ, Eds., in Lecture Notes in Mechanical Engineering. , Cham: Springer Nature Switzerland, 2023, pp. 152–161. doi: 10.1007/978-3-031-32767-4_15.
[154] G. U. Srikanth, R. Geetha, and S. Prabhu, “An efficient Key Agreement and Authentication Scheme (KAAS) with enhanced security control for IIoT systems,” Int. J. Inf. Technol., vol. 15, no. 3, pp. 1221–1230, Mar. 2023, doi: 10.1007/s41870-023-01173-2.
[155] A. Tahir and K. Mashood, “INTERNET OF THINGS AND BIG DATA IN THE CONTEXTS OF EDUCATION AND SCIENCE,” Pak. J. Educ. Res., vol. 6, no. 2, Art. no. 2, Jun. 2023, doi: 10.52337/pjer.v6i2.796.
[156] T. Cai et al., “On-Chain and Off-Chain Scalability Techniques,” in Blockchain Scalability, W. Chen, Z. Zheng, and H. Huang, Eds., Singapore: Springer Nature, 2023, pp. 81–96. doi: 10.1007/978-981-99-1059-5_3.
[157] B. Yu, L. Feng, H. Zhu, F. Qiu, J. Wan, and S. Yao, “MeHLDT: A multielement hash lock data transfer mechanism for on-chain and off-chain,” Peer–Peer Netw. Appl., vol. 16, no. 4, pp. 1927–1943, Aug. 2023, doi: 10.1007/s12083-023-01491-z.
[158] J. Wang, Y. Li, A. Tan, Z. Gong, and Y. Wang, “Multi-User On-Chain and Off-Chain Collaborative Query Optimization Based on Consortium Blockchain,” in Web Information Systems and Applications, L. Yuan, S. Yang, R. Li, E. Kanoulas, and X. Zhao, Eds., in Lecture Notes in Computer Science. Singapore: Springer Nature, 2023, pp. 476–487. doi: 10.1007/978-981-99-6222-8_40.
[159] N. Selvadurai, “Mitigating the Legal Challenges Associated with Blockchain Smart Contracts: The Potential of Hybrid On-Chain/Off-Chain Contracts,” Wash. Lee Law Rev., vol. 80, no. 3, p. 1163, Jul. 2023.
[160] P. Khobragade and A. K. Turuk, “On-chain off-chain blockchain model for IoT using IPFS,” in 27th International Conference on Advanced Computing and Communications (ADCOM 2022), Mar. 2023, pp. 30–34. doi: 10.1049/icp.2023.1452.
[161] N. Afraz, F. Wilhelmi, H. Ahmadi, and M. Ruffini, “Blockchain and Smart Contracts for Telecommunications: Requirements vs. Cost Analysis,” IEEE Access, vol. 11, pp. 95653–95666, 2023, doi: 10.1109/ACCESS.2023.3309423.
[162] J. Zhu, J. Cao, D. Saxena, S. Jiang, and H. Ferradi, “Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions,” ACM Comput. Surv., vol. 55, no. 11, p. 240:1-240:31, Feb. 2023, doi: 10.1145/3570953.
[163] G. Al-Sumaidaee, R. Alkhudary, Z. Zilic, and A. Swidan, “Performance analysis of a private blockchain network built on Hyperledger Fabric for healthcare,” Inf. Process. Manag., vol. 60, no. 2, p. 103160, Mar. 2023, doi: 10.1016/j.ipm.2022.103160.
[164] K. Saurabh, P. Upadhyay, and N. Rani, “A study on blockchain-based marketplace governance platform adoption: a multi-industry perspective,” Digit. Policy Regul. Gov., vol. ahead-of-print, no. ahead-of-print, Jan. 2023, doi: 10.1108/DPRG-04-2023-0053.
[165] S. Mollajafari and K. Bechkoum, “Blockchain Technology and Related Security Risks: Towards a Seven-Layer Perspective and Taxonomy,” Sustainability, vol. 15, no. 18, Art. no. 18, Jan. 2023, doi: 10.3390/su151813401.
[166] A. K. Yadav, K. Singh, A. H. Amin, L. Almutairi, T. R. Alsenani, and A. Ahmadian, “A comparative study on consensus mechanism with security threats and future scopes: Blockchain,” Comput. Commun., vol. 201, pp. 102–115, Mar. 2023, doi: 10.1016/j.comcom.2023.01.018.
[167] A. Rizzardi, S. Sicari, D. Miorandi, and A. Coen-Porisini, “Securing the access control policies to the Internet of Things resources through permissioned blockchain,” Concurr. Comput. Pract. Exp., vol. 34, no. 15, p. e6934, 2022, doi: 10.1002/cpe.6934.
[168] J. W. Seo, A. Islam, M. Masuduzzaman, and S. Y. Shin, “Blockchain-Based Secure Firmware Update Using an UAV,” Electronics, vol. 12, no. 10, Art. no. 10, Jan. 2023, doi: 10.3390/electronics12102189.
[169] G. Solomon, P. Zhang, R. Brooks, and Y. Liu, “A Secure and Cost-Efficient Blockchain Facilitated IoT Software Update Framework,” IEEE Access, vol. 11, pp. 44879–44894, 2023, doi: 10.1109/ACCESS.2023.3272899.
[170] F. Tong, X. Chen, C. Huang, Y. Zhang, and X. Shen, “Blockchain-Assisted Secure Intra/Inter-Domain Authorization and Authentication for Internet of Things,” IEEE Internet Things J., vol. 10, no. 9, pp. 7761–7773, May 2023, doi: 10.1109/JIOT.2022.3229676.
[171] Z. Bao, D. He, M. K. Khan, M. Luo, and Q. Xie, “PBidm: Privacy-Preserving Blockchain-Based Identity Management System for Industrial Internet of Things,” IEEE Trans. Ind. Inform., vol. 19, no. 2, pp. 1524–1534, Feb. 2023, doi: 10.1109/TII.2022.3206798.
[172] M. Chesser, S. Nepal, and D. C. Ranasinghe, “Icicle: A Re-Designed Emulator for Grey-Box Firmware Fuzzing,” Jun. 21, 2023, arXiv: arXiv:2301.13346. doi: 10.48550/arXiv.2301.13346.
[173] A. K. Al Hwaitat et al., “A New Blockchain-Based Authentication Framework for Secure IoT Networks,” Electronics, vol. 12, no. 17, Art. no. 17, Jan. 2023, doi: 10.3390/electronics12173618.
[174] A. Onwubiko, R. Singh, S. Awan, Z. Pervez, and N. Ramzan, “Enabling Trust and Security in Digital Twin Management: A Blockchain-Based Approach with Ethereum and IPFS,” Sensors, vol. 23, no. 14, Art. no. 14, Jan. 2023, doi: 10.3390/s23146641.
[175] O. A. Khashan and N. M. Khafajah, “Efficient hybrid centralized and blockchain-based authentication architecture for heterogeneous IoT systems,” J. King Saud Univ. – Comput. Inf. Sci., vol. 35, no. 2, pp. 726–739, Feb. 2023, doi: 10.1016/j.jksuci.2023.01.011.
[176] A. A. Aliyu and J. Liu, “Blockchain-Based Smart Farm Security Framework for the Internet of Things,” Sensors, vol. 23, no. 18, Art. no. 18, Jan. 2023, doi: 10.3390/s23187992.
[177] S. Shreya, K. Chatterjee, and A. Singh, “BFSF: A secure iot based framework for smart farming using blockchain,” Sustain. Comput. Inform. Syst., p. 100917, Sep. 2023, doi: 10.1016/j.suscom.2023.100917.
[178] K. Chatterjee, A. Singh, and Neha, “A blockchain-enabled security framework for smart agriculture,” Comput. Electr. Eng., vol. 106, p. 108594, Mar. 2023, doi: 10.1016/j.compeleceng.2023.108594.
[179] Z. Qadir, K. N. Le, N. Saeed, and H. S. Munawar, “Towards 6G Internet of Things: Recent advances, use cases, and open challenges,” ICT Express, vol. 9, no. 3, pp. 296–312, Jun. 2023, doi: 10.1016/j.icte.2022.06.006.
Trends in Electrical Engineering
Volume | 15 |
Issue | 01 |
Received | 10/01/2025 |
Accepted | 14/01/2025 |
Published | 15/01/2025 |