Artificial Intelligence in Drug Repurposing: A Short Impact

Year : 2024 | Volume :11 | Issue : 03 | Page : –
By

Mekkanti Manasa Rekha,

Soumitra Das,

  1. Associate Professor, Department of Pharmacy Practice, Aditya Bangalore Institute of Pharmacy Education and Research, Bangalore, Karnataka, India
  2. Pharm.D V Year, Department of Pharmacy Practice, Aditya Bangalore Institute of Pharmacy Education and Research, Bangalore, Karnataka, India

Abstract

Artificial intelligence (AI) in pharmaceutical repurposing has become a game-changing tool that opens new avenues for the application of new drugs that have already been approved. Traditional drug discovery is a lengthy and expensive process, whereas AI can rapidly analyze vast datasets of biological, chemical, and clinical information to predict drug-disease interactions. AI-driven techniques, such as machine learning, natural language processing, and deep learning, enable the identification of potential repurposing candidates by analyzing molecular structures, gene expression profiles, and patient data. Recent success stories include AI models identifying drugs like Baricitinib for COVID-19 and different substances for uncommon illnesses, like Fragile X syndrome. AI’s capacity to streamline the process of discovering drugs speeds up therapy development, cuts costs, and improves the accuracy of matching drugs to diseases, proving to be a valuable tool in combating various illnesses. Nonetheless, issues like data quality, AI model interpretability, and the requirement for clinical validation continue to be crucial areas for additional study.

Keywords: Artificial intelligence (AI), COVID-19, Fragile X syndrome, Baricitinib, AI-driven techniques, etc,

[This article belongs to Trends in Drug Delivery (tdd)]

How to cite this article:
Mekkanti Manasa Rekha, Soumitra Das. Artificial Intelligence in Drug Repurposing: A Short Impact. Trends in Drug Delivery. 2024; 11(03):-.
How to cite this URL:
Mekkanti Manasa Rekha, Soumitra Das. Artificial Intelligence in Drug Repurposing: A Short Impact. Trends in Drug Delivery. 2024; 11(03):-. Available from: https://journals.stmjournals.com/tdd/article=2024/view=180557

References

1. Haendel, M, Vasilevsky, N, Unni, D, Bologa, C, Harris, N, Rehm, H, et al. How many rare diseases are there? Nat Rev Drug Discov. (2020) 19(2):77–8. doi: 10.1038/d41573-019-00180-y
2. Scherman, D, and Fetro, C. Drug repositioning for rare diseases: knowledge-based success stories. Therapie. (2020) 75(2):161–7. doi: 10.1016/j.therap.2020.02.007

3. Roessler, HI, Knoers, NVAM, van Haelst, MM, and van Haaften, G. Drug repurposing for rare diseases. Trends Pharmacol Sci. (2021) 42 (4) :255–67. doi: 10.1016/j.tips.2021.01.003

4. Choi, RY, Aaron, SC, Jayashree, K-C, Michael, FC, and Peter, JC. “Introduction to Machine Learning, Neural Networks, and Deep Learning.” Translational Vision Science & Technology (n.d.). 9: (2):14. doi: 10.1167/tvst.9.2.14

5. Khurana, D, Aditya, K, Kiran, K, and Sukhdev, S. “Natural Language Processing: State of the Art, Current Trends and Challenges.” Multimedia Tools and Applications 2023;82(3):3713-3744. doi: 10.1007/s11042-022-13428-4.

6. Alowais, SA, Alghamdi, SS, Alsuhebany, N, Alqahtani, T, Alshaya, AI, Almohareb, SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. (2023) 23:689. doi: 10.1186/s12909-023-04698-z

7. Bajwa, J, Munir, U, Nori, A, and Williams, B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. (2021) 8(2):e188–94. doi: 10.7861/fhj.2021-0095

8. Brasil, S, Pascoal, C, Francisco, R, Dos Reis Ferreira, V, Videira, PA, and Valadão, AG. Artificial intelligence (AI) in rare diseases: is the future brighter? Genes. (2019) 10(12) :978. doi: 10.3390/genes10120978

9. Jonker, AH, O’Connor, D, Cavaller-Bellaubi, M, Fetro, C, Gogou, M,’t Hoen, PAC, et al. Drug repurposing for rare: progress and opportunities for the rare disease community. Front Med. (2024) 17:11:1352803. doi: 10.3389/fmed.2024.1352803

10. van der Pol Karel, H, Aljofan, M, Blin, O, Cornel, JH, Rongen, GA, Woestelandt, A-G, et al. Drug repurposing of generic drugs: challenges and the potential role for government. Appl Health Econ Health Policy. (2023) 21:831–40. doi: 10.1007/s40258-023-00816-6

11. Cha Y, Erez T, Reynolds IJ, Kumar D, Ross J, Koytiger G, Kusko R, Zeskind B, Risso S, Kagan E, Papapetropoulos S. Drug repurposing from the perspective of pharmaceutical companies. British journal of pharmacology. 2018 Jan;175(2):168-80.
12. Ekins, S., Gerlach, J., Zorn, K.M. et al. Repurposing Approved Drugs as Inhibitors of Kv7.1 and Nav1.8 to Treat Pitt Hopkins Syndrome. Pharm Res 36, 137 (2019). https://doi.org/10.1007/s11095-019-2671-y

13. Sosa, DN, Derry, A, Guo, M, Wei, E, Brinton, C, and Altman, RB. A literature-based knowledge graph embedding method for identifying drug repurposing opportunities in rare diseases. Pac Symp Biocomput. (2020) 25:463–74.

14. Esmail, S, and Danter, WR. Artificially induced pluripotent stem cell-derived whole-brain organoid for modelling the pathophysiology of metachromatic leukodystrophy and drug repurposing. Biomedicines. (2021) 9(4):440. doi: 10.3390/biomedicines9040440

15. Cong, Y, Shintani, M, Imanari, F, Osada, N, and Endo, T. A new approach to drug repurposing with two-stage prediction, machine learning, and unsupervised clustering of gene expression. OMICS. (2022) 26(6):339–47. doi: 10.1089/omi.2022.0026

16. Foksinska, A, Crowder, CM, Crouse, AB, Henrikson, J, Byrd, WE, Rosenblatt, G, et al. The precision medicine process for treating rare disease using the artificial intelligence tool mediKanren. Front Artif Intell. (2022) 5:910216. doi: 10.3389/frai.2022.910216

17. Zhu, C, Xia, X, Li, N, Zhong, F, Yang, Z, and Liu, L. RDKG-115: assisting drug repurposing and discovery for rare diseases by trimodal knowledge graph embedding. Comput Biol Med. (2023) 164:107262. doi: 10.1016/j.compbiomed.2023.107262

18. Every Cure. (2024). Unlocking the hidden potential of existing drugs to save lives. Available at: https://everycure.org/. (Consulté le mars 17, 2024)
19. REPO4EU. (2024). Euro-global platform for drug repurposing. Available at: https://repo4.eu/. (Consulté le mars 18, 2024)
20. Open Targets. (2024). Available at: https://www.opentargets.org/. (Consulté le 17 mars, 2024)
21. Broad Institute. (2019). Drug Repurposing Hub. Available at: https://www.broadinstitute.org/drug-repurposing-hub
22. Corsello, S., Bittker, J., Liu, Z. et al. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat Med 23, 405–408 (2017). https://doi.org/10.1038/nm.4306

23. EURORDIS. (2024). REMEDi4ALL, an ambitious EU-funded research initiative, launches to drive forward the repurposing of medicines in Europe. Available at: https://www.eurordis.org/press-release-remedi4all/. (Consulté le mars 18, 2024)
24. AFM Téléthon. (2023). I-Stem, coordinateur du consortium de recherche européen DREAMS associant intelligence artificielle, cellules souches et criblage pharmacologique pour traiter des maladies neuromusculaires. Available at: https://www.afm-telethon.fr/fr/communiques-de-presse/i-stem-coordinateur-du-consortium-de-recherche-europeen-dreams-associant
25. HealX. (2024). AI drug discovery. Rare disease treatment. Available at: https://healx.ai/. (Consulté le mars 17, 2024)
26. Biovista. (2024). Drug positioning and prioritization-drug repositioning. Biovista drug positioning and prioritization (blog). Available at: https://www.biovista.com/solutions/drug-repositioning/. (Consulté le mars 17, 2024)
27. Visibelli, A, Bianca, R, Ottavia, S, and Annalisa, S. “The Impact of Artificial Intelligence in the Odyssey of Rare Diseases.” Biomedicines (2023) 11(3): 887. doi: 10.3390/biomedicines11030887
28. Wojtara, M, Emaan, R, Taibia, R, Palak, K, and Heshwin, S. Artificial Intelligence in Rare Disease Diagnosis and Treatment. Clinical and Translational Science (2023) 16,(11): 2106–11. doi: 10.1111/cts.13619

 


Regular Issue Subscription Review Article
Volume 11
Issue 03
Received 27/09/2024
Accepted 25/10/2024
Published 30/10/2024