Sakshi Chauhan,
Moumita Barman,
Monika Singh,
- Research Scholar, Department of Pharmacy, I.T.S. College of Pharmacy, Murad Nagar, Ghaziabad, Uttar Pradesh, India
- Associate Professor, Department of Pharmaceutics, I.T.S. College of Pharmacy, Murad Nagar, Ghaziabad, Uttar Pradesh, India
- Associate Professor, Department of Pharmacology, I.T.S. College of Pharmacy, Murad Nagar, Ghaziabad, Uttar Pradesh, India
Abstract document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_109852’);});Edit Abstract & Keyword
There have been several non-invasive administrations that have emerged recently to replace conventional needle injections. With its minimal rejection rate, remarkable ease of administration, and remarkable patient comfort and perseverance, the transdermal drug delivery system (TDDS) is the most attractive of them all. The skincare industry, which includes cosmetics, may also find use for TDDS in addition to the pharmaceutical industry. As this strategy mainly entails local drug administration, it can prevent untargeted drug delivery to tissues not intended for the treatment and buildup of localized drug concentrations. Transdermal delivery is hampered by several physicochemical characteristics of the skin, which have led to a great deal of research into ways to get over these barriers. Most transdermal medicines that have proved effective, do so by using smaller lipophilic compounds, which have a molecular weight of a few 100 Daltons. Transferosomes have proven to be an effective method for transdermal distribution of a range of therapies, including hydrophilic actives, bigger molecules, peptides, proteins, and nucleic acids, to get around the medications’ size and lipophilicity limits. Because of their flexible form and increased surface hydrophilicity, transferosomes are essential for the delivery of medicines and other solutes through and into the skin by exploiting hydration gradients a source of energy. As a result, the medication is released into the skin layers under regulated conditions and has improved overall penetration. This review outlines the development of transferosomes from liposomes and solid lipid nanoparticles, as well as their subsequent advancements as commercially available dosage forms, physical-chemical characteristics, and cutaneous kinetics.
Keywords: Transdermal delivery, transdermal drug delivery system (TDDS), transferosomes, nanoparticles, stratum corneum
[This article belongs to Trends in Drug Delivery (tdd)]
Sakshi Chauhan, Moumita Barman, Monika Singh. Recent Advances & Prospects of Transferosomes for Transdermal Delivery: Trends in Drug Delivery. Trends in Drug Delivery. 2024; 11(03):1-22.
Sakshi Chauhan, Moumita Barman, Monika Singh. Recent Advances & Prospects of Transferosomes for Transdermal Delivery: Trends in Drug Delivery. Trends in Drug Delivery. 2024; 11(03):1-22. Available from: https://journals.stmjournals.com/tdd/article=2024/view=0
References
document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_109852’);});Edit
- Richard C, Cassel S, Blanzat M.. Vesicular systems for dermal and transdermal drug delivery. RSC Adv. 2021;11:442–451. doi: 10.1039/D0RA09561C.
- Moronkeji K, Todd S, Dawidowska I, Barrett SD, Akhtar R.. The role of subcutaneous tissue stiffness on microneedle performance in a representative in vitro model of skin. J. Control. Release. 2017;265:102–112. doi: 10.1016/j.jconrel.2016.11.004.
- Karande P, Mitragotri S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim. et Biophys. Acta (BBA) Biomembr. 2009;1788:2362–2373. doi: 10.1016/j.bbamem.2009.08.015.
- Alkilani AZ, Alkalbani R, Jaber D, Hamed R, Hamad I, Abumansour H, Assab MA. Knowledge, attitude, practice and satisfaction of patients using analgesic patches in Jordan. Trop. J. Pharm. Res. 2019;18:1745–1753.
- Berner B, John VA. Pharmacokinetic characterisation of transdermal delivery systems. Clin. Pharmacokinet. 1994;26:121–134. doi: 10.2165/00003088-199426020-00005.
- Parhi R, Mandru A. Enhancement of skin permeability with thermal ablation techniques: Concept to commercial products. Drug Deliv. Transl. Res. 2021;11:817–841. doi: 10.1007/s13346-020-00823-3.
- Kurz A, Farlow M, Lefèvre G. Pharmacokinetics of a novel transdermal rivastigmine patch for the treatment of Alzheimer’s disease: A review. Int. J. Clin. Pract. 2009;63:799–805. doi: 10.1111/j.1742-1241.2009.02052.x.
- Lane ME. Skin penetration enhancers. Int. J. Pharm. 2013;447:12–21. doi: 10.1016/j.ijpharm.2013.02.040.
- Hamed R, Al Baraghthi T, Alkilani AZ, Abu-Huwaij R.. Correlation between rheological properties and in vitro drug release from penetration enhancer-loaded Carbopol® gels. J. Pharm. Innov. 2016;11:339–351. doi: 10.1007/s12247-016-9262-9.
- Hao Y, Li W, Zhou X, Yang F, Qian Z.. Microneedles-based transdermal drug delivery systems: A review. J. Biomed. Nanotechnol. 2017;13:1581–1597. doi: 10.1166/jbn.2017.2474.
- Imam SS, Agarwal S. A pragmatic approach to treat lung cancer through loading Theaflavin-3, 3’-Digallate and Epigallocatechin Gallate in Spanlastic. Asian J Pharm Clin 2021 Nov 7; 14(11): 1–8.
- Imam SS. The future of non-invasive ways to treat cancer. Int J Pharm Sci & Res 2021;12(8): 4684–96.
- Imam SS, Imam ST, Mdwasifathar, Kumar R, Ammar Interaction between Ace 2 And Sars-Cov2, and use of EGCG and Theaflavin to treat Covid-19 in initial phases. Int J Curr Pharma Res. 2022 Mar;14(2):5– 10.
- Imam SS, Sharma Natural compounds promising way to treat Lung Cancer. Int J Pharm Res Appl. 2023;8(2): 552– 558.
- Imam SS, Sharma S, Kumari D, Khan S, Pathak P, Katiyar An Expedient Approach to Treat Asthma through Non-Steroidal, Natural Transferosomes Aerosol System. Innov J Med Sci . 2022;10(6): 7–11.
- Imam SS, Imam ST, Agarwal S, Kumar R, Ammar MY, Athar MW, Akthar A. Lung Cancer Therapy Using Naturally Occurring Products and Nanotechnology. Innovare J Med Sci. 2022;10(4): 1–5.
- Imam ST, Imam SS. The Cream which relieves the pain of Menstrual cramps without interfering with the Hormones or Period Cycle. Res J Pharm Techno. 2023;16(3):1239–6.
- Imam SS. Topical Formulation Constituted with Transferosomes for the Treatment Of Non-Melanoma Skin Cancer. Asian J Pharm Clin Res. 2023 May 7;16(5):27–32.
- Imam SS. Nanoparticles: the future of drug delivery. Int J Curr Pharm Sci. 2023;15(6):8–15.
- Ramadon D, McCrudden MT, Courtenay AJ, Donnelly RF. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res. 2022;4:758–91. doi: 10.1007/s13346-021-00909-6.
- Akhtar N, Singh V, Yusuf M, Khan RA. Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomed Eng/Biomed Tech. 2020;65:243–72. doi: 10.1515/bmt-2019-0019.
- Subedi RK, Oh SY, Chun MK, Choi HK. Recent advances in transdermal drug delivery. Arch Pharm Res. 2010;33:339–51. doi: 10.1007/s12272-010-0301-7.
- Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29:2113–24. doi: 10.1016/j.biomaterials.2007.12.048.
- Finnin BC, Morgan TM. Transdermal penetration enhancers: applications, limitations, and potential. J Pharm Sci. 1999;88:955–8. doi: 10.1021/js990154g.
- Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices for transdermal drug delivery. Int J Pharm. 2008;364:227–36. doi: 10.1016/j.ijpharm.2008.08.032.
- Zorec B, Préat V, Miklavčič D, Pavšelj N. Active enhancement methods for intra- and transdermal drug delivery: a review. Slov Med J. 2013;82:5.
- Kling J, DeFrancesco L. The paper trail to commercialization. Nat Biotechnol. 2007;25:1217. doi: 10.1038/nbt1107–1217a.
- Karande P, Jain A, Mitragotri S. Discovery of transdermal penetration enhancers by high-throughput screening. Nat Biotechnol. 2004;22:192–197. doi: 10.1038/nbt928.
- Bozdaganyan ME., Orekhov PS. Synergistic Effect of Chemical Penetration Enhancers on Lidocaine Permeability Revealed by Coarse-Grained Molecular Dynamics Simulations. Membranes. 2021;11:410. doi:.3390/membranes11060410.
- Cho CW, Shin SC. Enhanced transdermal delivery of atenolol from the ethylene-vinyl acetate matrix. Int J Pharm. 2004;287:67–71. doi:10.1016/j.ijpharm.2004.08.013.
- Dragicevic N, Maibach HI. Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer; Berlin/Heidelberg, Germany: 2017.
- Kanikkannan N, Singh M. Skin permeation enhancement effect and skin irritation of saturated fatty alcohols. Int J Pharm. 2002;248:219–228. doi:10.1016/S0378-5173(02)00454-4.
- Maibach HI, Feldmann RJ. The effect of DMSO on percutaneous penetration of hydrocortisone and testosterone in man. Ann N Y Acad Sci. 1967;141:423–427.doi:10.1111/j.1749-6632.1967.tb34906.x.
- Hadgraft J, Lane ME. Transdermal delivery of testosterone. Eur J Pharm. Biopharm. 2015;92:42–48. doi:10.1016/j.ejpb.2015.02.015.
- Jaiswal J, Poduri R, Panchagnula R. Transdermal delivery of naloxone: Ex vivo permeation studies. Int J Pharm. 1999;179:129–134. doi: 10.1016/S0378-5173(98)00383-4.
- Liu C, Guan Y, Tian Q, Shi X, Fang L.. Transdermal enhancement strategy of ketoprofen and teriflunomide: The effect of enhanced drug-drug intermolecular interaction by permeation enhancer on drug release of compound transdermal patch. Int J Pharm. 2019;572:118800. doi: 10.1016/j.ijpharm.2019.118800.
- Ameen D, Michniak-Kohn B. Transdermal delivery of dimethyl fumarate for Alzheimer’s disease: Effect of penetration enhancers. Int J Pharm. 2017;529:465–473. doi: 10.1016/j.ijpharm.2017.07.031.
- Singh BN, Singh RB, Singh J. Effects of ionization and penetration enhancers on the transdermal delivery of 5-fluorouracil through excised human stratum corneum. Int J Pharm. 2005;298:98–107. doi:10.1016/j.ijpharm.2005.04.004.
- Lee PJ, Langer R, Shastri VP. Role of n-methyl pyrrolidone in the enhancement of aqueous phase transdermal transport. J Pharm Sci. 2005;94:912–917. doi: 10.1002/jps.20291.
- Ogiso T, Hata T, Iwaki M, Tanino T. Transdermal absorption of bupranolol in rabbit skin in vitro and in vivo. Biol. Pharm. Bull. 2001;24:588–591. doi:10.1248/bpb.24.588.
- Van Zyl L, Du Preez J, Gerber M, Du Plessis J, Viljoen J. Essential fatty acids as transdermal penetration enhancers. J Pharm Sci. 2016;105:188–193. doi:10.1016/j.xphs.2015.11.032.
- Stott PW, Williams AC, Barry BW. Mechanistic study into the enhanced transdermal permeation of a model β-blocker, propranolol, by fatty acids: A melting point depression effect. Int J Pharm. 2001;219:161–176. doi:10.1016/S0378-5173(01)00645-7.
- Klimentová J, Kosák P, Vávrová K, Holas T, Hrabálek A. Influence of terminal branching on the transdermal permeation-enhancing activity in fatty alcohols and acids. Bioorganic Med. Chem. 2006;14:7681–7687. doi:10.1016/j.bmc.2006.08.013.
- Melero A, Garrigues T, Almudever P, Martı A, Lehr C, Schäfer U. Nortriptyline hydrochloride skin absorption: Development of a transdermal patch. Eur J Pharm Biopharm. 2008;69:588–596. doi:10.1016/j.ejpb.2007.11.012.
- Haq A, Michniak-Kohn B. Effects of solvents and penetration enhancers on transdermal delivery of thymoquinone: Permeability and skin deposition study. Drug Deliv. 2018;25:1943–1949. doi: 10.1080/10717544.2018.1523256.
- Stahl J, Kietzmann M. The effects of chemical and physical penetration enhancers on the percutaneous permeation of lidocaine through equine skin. BMC Vet Res. 2014;10:1–6. doi: 10.1186/1746-6148-10-138.
- Ogiso T, Iwaki M, Paku T. Effect of various enhancers on transdermal penetration of indomethacin and urea, and relationship between penetration parameters and enhancement factors. J Pharm Sci. 1995;84:482–488. doi:10.1002/jps.2600840418.
- Vijaya C, Bingi M, Vigneshwaran L. Transdermal delivery of venlafaxine hydrochloride: The effects of enhancers on permeation across pig ear skin. Indian J Pharm Sci. 2011;73:456.
- Björklund S, Engblom J, Thuresson K, Sparr E. Glycerol and urea can be used to increase skin permeability in reduced hydration conditions. Eur. J. Pharm. Sci. 2013;50:638–645. doi: 10.1016/j.ejps.2013.04.022.
- Narishetty STK, Panchagnula R. Transdermal delivery of zidovudine: Effect of terpenes and their mechanism of action. J Control Release.2004;95:367–379. doi: 10.1016/j.jconrel.2003.11.022.
- Jain AK, Thomas NS, Panchagnula R. Transdermal drug delivery of imipramine hydrochloride.: I. Effect of terpenes. J Control Release. 2002;79:93–101. doi: 10.1016/S0168-3659(01)00524-7.
- Nokhodchi A, Shokri J, Dashbolaghi A, Hassan-Zadeh D, Ghafourian T, Barzegar-Jalali M. The enhancement effect of surfactants on the penetration of lorazepam through rat skin. Int J Pharm. 2003;250:359–369. doi:10.1016/S0378-5173(02)00554-9.
- Piret J, Désormeaux A, Cormier H, Lamontagne J, Gourde P, Juhász J, Bergeron MG. Sodium lauryl sulfate increases the efficacy of a topical formulation of foscarnet against herpes simplex virus type 1 cutaneous lesions in mice. Antimicrob Agents Chemother. 2000;44:2263–2270. doi:10.1128/AAC.44.9.2263-2270.2000.
- Akhtar N, Rehman M, Khan H, Rasool F, Saeed T, Murtaz G. Penetration enhancing effect of polysorbate 20 and 80 on the in vitro percutaneous absorption of lascorbic acid. Trop J Pharm Res. 2011;10:3.doi:10.4314/tjpr.v10i3.1.
- Abdulbaqi IM, Darwis Y, Khan NA, Assi RA, Khan AA. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int J Nanomed. 2016;11:2279–2304. doi:10.2147/IJN.S105016.
- Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol. 2020;56:101581. doi: 10.1016/j.jddst.2020.101581
- Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed. 2015;10:975–99. doi: 10.2147/IJN.S68861.
- Chacko IA, Ghate VM, Dsouza L, Lewis SA. Lipid vesicles: a versatile drug delivery platform for dermal and transdermal applications. Colloids Surf B Biointerfaces. 2020;195:111262. doi: 10.1016/j.colsurfb.2020.111262
- Babaie S, Bakhshayesh ARD, Ha JW, Hamishehkar H, Kim KH. Invasome: a novel nanocarrier for transdermal drug delivery. Nanomaterials. 2020;10:341. doi: 10.3390/nano10020341
- Jain S, Jain V, Mahajan SC. Lipid based vesicular drug delivery systems. Adv Pharm. 2014;2014:574673. doi: 10.1155/2014/574673
- Pandita A, Sharma P. Pharmacosomes: an emerging novel vesicular drug delivery system for poorly soluble synthetic and herbal drugs. ISRN Pharm. 2013;2013:348186. doi: 10.1155/2013/348186.
- Witika BA, Mweetwa LL, Tshiamo KO, Edler K, Matafwali SK, Ntemi PV, Chikukwa MTR, Makoni PA. Vesicular drug delivery for the treatment of topical disorders: Current and future perspectives. J Pharm Pharmacol. 2021;73:1427–41. doi: 10.1093/jpp/rgab082.
- Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SEL, Vader P. Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev. 2020;159:332–43. doi: 10.1016/j.addr.2020.04.004.
- Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9:748. doi: 10.3389/fbioe.2021.705886.
- Nayak D, Tippavajhala VK. A comprehensive review on preparation, evaluation and applications of deformable liposomes. Iran J Pharm Res. 2021;20:186–205.
- Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull. 2017;7:3–9. doi: 10.15171/apb.2017.002.
- Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomed. 2017;12:5087–108. doi: 10.2147/IJN.S138267.
- Ntimenou V, Fahr A, Antimisiaris SG. Elastic vesicles for transdermal drug delivery of hydrophilic drugs: a comparison of important physicochemical characteristics of different vesicle types. J Biomed Nanotechnol. 2012;8:613–23. doi: 10.1166/jbn.2012.1426.
- Romero EL, Morilla MJ. Ultradeformable phospholipid vesicles as a drug delivery system: a review. Res Rep Transdermal Drug Deliv. 2015;4:55–69. doi: 10.2147/RRTD.S50370.
- Sudhakar K, Fuloria S, Subramaniyan V, Sathasivam KV, Azad AK, Swain SS, Sekar M, Karupiah S, Porwal O, Sahoo A, et al. Ultraflexible liposome nanocargo as a dermal and transdermal drug delivery system. Nanomaterials. 2021;11:2557. doi: 10.3390/nano11102557.
- Rai S, Pandey V. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. Nano Rev. 2017;8:1325708. doi: 10.1080/20022727.2017.1325708.
- Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: a promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics. 2020;12:855. doi: 10.3390/pharmaceutics12090855.
- Akram MW, Jamshaid H, Rehman FU, Zaeem M, Khan JZ, Zeb A. Transfersomes: a revolutionary nanosystem for efficient transdermal drug delivery. AAPS Pharm Sci Tech. 2021;23:7. doi: 10.1208/s12249-021-02166-9.
- Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes. J Drug Deliv. 2011;2011:418316. doi: 10.1155/2011/418316.
- Sardana V, Burzynski J, Zalzal P. Safety and efficacy of topical ketoprofen in transfersome gel in knee osteoarthritis: a systematic review. Musculoskelet Care. 2017;15:114–21. doi: 10.1002/msc.1163.
- Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O’Neill F, Roberts M. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic. J Pharm Pharmacol. 2019;71:1508–19. doi: 10.1111/jphp.13149.
- Cevc G. Transdermal drug delivery of insulin with ultradeformable carriers. Clin Pharmacokinet. 2003;42:461–74. doi: 10.2165/00003088-200342050-00004.
- Cevc G, Blume G, Schätzlein A. Transfersomes-mediated transepidermal delivery improves the regio-specificity and biological activity of corticosteroids in vivo. J Control Release. 1997;45:211–26. doi: 10.1016/S0168-3659(96)01566-0.
- Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm. 2019;144:18–39. doi: 10.1016/j.ejpb.2019.08.015.
- Khoee S, Yaghoobian M. Chapter 6—Niosomes: a novel approach in modern drug delivery systems. In: Andronescu E, Grumezescu AM, editors. Nanostructures for drug delivery. Elsevier; Amsterdam, The Netherlands: 2017. p. 207–37.
- Masjedi M, Montahaei T. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: fabrication, characterization, pharmaceutical, and cosmetic applications. J Drug Deliv Sci Technol. 2021;61:102234. doi: 10.1016/j.jddst.2020.102234.
- Durak S, Esmaeili Rad M, Alp Yetisgin A. Niosomal drug delivery systems for ocular disease—recent advances and future prospects. Nanomaterials. 2020;10:1191. doi: 10.3390/nano10061191.
- Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019;11:55. doi: 10.3390/pharmaceutics11020055.
- Khan R, Irchhaiya R. Niosomes: A potential tool for novel drug delivery. J Pharm Investig. 2016;46:195–204. doi: 10.1007/s40005-016-0249-9.
- El-Ridy MS, Yehia SA, Mohsen AM, El-Awdan SA, Darwish AB. Formulation of niosomal gel for enhanced transdermal lornoxicam delivery: in vitro and in vivo evaluation. Curr Drug Deliv. 2018;15:122–33. doi: 10.2174/1567201814666170224141548.
- Patel KK, Kumar P, Thakkar HP. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS Pharm Sci Tech. 2012;13:1502–10. doi: 10.1208/s12249-012-9871-7.
- Honeywell-Nguyen PL, Bouwstra JA. The in vitro transport of pergolide from surfactant-based elastic vesicles through human skin: a suggested mechanism of action. J Control Release. 2003;86:145–56. doi: 10.1016/S0168-3659(02)00415-7.
- El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci. 2008;34:203–22. doi: 10.1016/j.ejps.2008.05.002.
- Benson HAE, Grice JE, Mohammed Y, Namjoshi S, Roberts MS. Topical and transdermal drug delivery: from simple potions to smart technologies. Curr Drug Deliv. 2019;16:444–60. doi: 10.2174/1567201816666190201143457.
- Halnor V, Pande V, Borawake D, Nagare H. Nanoemulsion: A novel platform for drug delivery system. J Mat Sci Nanotech. 2018;6:104.
- Hamed R, Basil M, AlBaraghthi T, Sunoqrot S, Tarawneh O. Nanoemulsion-based gel formulation of diclofenac diethylamine: Design, optimization, rheological behavior and in vitro diffusion studies. Pharm Dev Technol. 2016;21:980–9. doi: 10.3109/10837450.2015.1086372.
- Abu-Huwaij R, Al-Assaf SF, Hamed R. Recent exploration of nanoemulsions for drugs and cosmeceuticals delivery. J Cosmet Dermatol. 2021. doi: 10.1111/jocd.14704.
- McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 2012;8:1719–29. doi: 10.1039/C2SM06903B.
- Hamed R, Al-Adhami Y, Abu-Huwaij R. Concentration of a microemulsion influences the mechanical properties of ibuprofen in situ microgels. Int J Pharm. 2019;570:118684. doi: 10.1016/j.ijpharm.2019.118684.
- Hamed R, Farhan A, Abu-Huwaij R, Mahmoud NN, Kamal A. Lidocaine microemulsion-laden organogels as lipid-based systems for topical delivery. J Pharm Innov. 2019;15:1–14. doi: 10.1007/s12247-019-09399-z.
- Ganesan P, Karthivashan G, Park SY, Kim J, Choi DK. Microfluidization trends in the development of nanodelivery systems and applications in chronic disease treatments. Int J Nanomed. 2018;13:6109. doi: 10.2147/IJN.S178077.
- Qian C, McClements DJ. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocoll. 2011;25:1000–8. doi: 10.1016/j.foodhyd.2010.09.017.
- Hashtjin AM, Abbasi S. Nano-emulsification of orange peel essential oil using sonication and native gums. Food Hydrocoll. 2015;44:40–8. doi: 10.1016/j.foodhyd.2014.08.017.
- Liu W, Sun D, Li C, Liu Q, Xu J. Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. J Colloid Interface Sci. 2006;303:557–63. doi: 10.1016/j.jcis.2006.07.055.
- Izquierdo P, Esquena J, Tadros TF, Dederen C, Garcia M, Azemar N, et al. Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir. 2002;18:26–30. doi: 10.1021/la010808c.
- Azmi NAN, Elgharbawy AA, Motlagh SR, Samsudin N, Salleh HM. Nanoemulsions: Factory for food, pharmaceutical and cosmetics. Processes. 2019;7:617. doi: 10.3390/pr7090617.
- Devarajan V, Ravichandran V. Nanoemulsions: As modified drug delivery tool. Int J Compr Pharm. 2011;2:1–6.
- Chavda VP, Shah D. A review on novel emulsification technique: a nanoemulsion. J Pharmacol Toxicol Stud. 2017;5:32–3.
- Sutradhar KB, Amin ML. Nanoemulsions: increasing possibilities in drug delivery. Eur J Nanomed. 2013;5:97–110. doi: 10.1515/ejnm-2013-0001.
- Hamed R, Mahmoud NN, Alnadi SH, Alkilani AZ, Hussein G. Diclofenac diethylamine nanosystems-loaded bigels for topical delivery: development, rheological characterization, and release studies. Drug Dev Ind Pharm. 2020;46:1705–15. doi: 10.1080/03639045.2020.1820038.
- Koroleva M, Nagovitsina T, Yurtov E. Nanoemulsions stabilized by non-ionic surfactants: stability and degradation mechanisms. Phys Chem Chem Phys. 2018;20:10369–77. doi: 10.1039/C7CP07626F.
- Fernandes AR, Sanchez-Lopez E, Santos Td, Garcia ML, Silva AM, Souto EB. Development and characterization of nanoemulsions for ophthalmic applications: Role of cationic surfactants. Materials. 2021;14:7541. doi: 10.3390/ma14247541.
- Fraga M, de Carvalho TG, da Silva Diel D, Bruxel F, Teixeira HF, Matte UC. Cationic nanoemulsions as a gene delivery system: proof of concept in the mucopolysaccharidosis I murine model. J Nanosci Nanotechnol. 2015;15:810–6. doi: 10.1166/jnn.2015.9179.
- Kundu P, Agrawal A, Mateen H, Mishra IM. Stability of oil-in-water macro-emulsion with anionic surfactant: effect of electrolytes and temperature. Chem Eng Sci. 2013;102:176–85. doi: 10.1016/j.ces.2013.07.050.
- Ribeiro RCdA, Barreto SMA, Ostrosky EA, Rocha-Filho PAd, Veríssimo LM, Ferrari M. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) Mill extract as moisturizing agent. Molecules. 2015;20:2492–2509. doi: 10.3390/molecules20022492.
- Hamed R, Seder BY, Bardaweel SK, Qawass H. Lipid-based formulations of microemulsion-loaded oleogels for the oral delivery of carvedilol. J Dispers Sci Technol. 2021:1–11. doi: 10.1080/01932691.2021.1964987.
- Praveen Kumar G, Divya A. Nanoemulsion based targeting in cancer therapeutics. Med Chem. 2015;5:272–84. doi: 10.4172/2161-0444.1000275.
- Lovelyn C, Attama AA. Current state of nanoemulsions in drug delivery. J Biomater Nanobiotechnol. 2011;2:626. doi: 10.4236/jbnb.2011.225075.
- Shaker DS, Ishak RA, Ghoneim A, Elhuoni MA. Nanoemulsion: A review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Sci Pharm. 2019;87:17. doi: 10.3390/scipharm87030017.
- Zaid Alkilani A, Hamed R, Hussein G, Alnadi S. Nanoemulsion-based patch for the dermal delivery of ascorbic acid. J Dispers Sci Technol. 2021:1–11. doi: 10.1080/01932691.2021.1880924.
- Zhengguang L, Jie H, Yong Z, Jiaojiao C, Xingqi W, Xiaoqin C. Study on the transdermal penetration mechanism of ibuprofen nanoemulsions. Drug Dev Ind Pharm. 2019;45:465–73. doi: 10.1080/03639045.2018.1546317.
Trends in Drug Delivery
Volume | 11 |
Issue | 03 |
Received | 23/09/2024 |
Accepted | 01/10/2024 |
Published | 26/10/2024 |
function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}