Marine-Derived Pharmaceuticals: Unlocking the Ocean’s Potential for Human Health

Year : 2025 | Volume : 12 | Issue : 01 | Page : 1-12
    By

    Bhupendra M. Mahale,

  • Akshata M. Girase,

  • Sandip. A. Tadavi,

  • Javesh. K. Patil,

  • Amitkumar R.Dhankani,

  1. Research Scholar, Pharmaceutical Quality Assurance, P.S.G.V.P.mandals Collage of pharmacy, Shahada, Maharashtra, India
  2. Research Scholar, Pharmaceutical Quality Assurance, P.S.G.V.P.mandals Collage of pharmacy, Shahada, Maharashtra, India
  3. Associate Professor, Department of Pharmaceutics, P.S.G.V.P.mandals Collage of pharmacy, Shahada, Maharashtra, India
  4. Professor, Department of Pharmacognosy, P.S.G.V.P.mandals Collage of pharmacy, Shahada, Maharashtra, India
  5. Associate Professor, Department of Pharmaceutical Quality Assurance, P.S.G.V.P.mandals Collage of pharmacy, Shahada, Maharashtra, India

Abstract

The ocean, covering 70% of the Earth’s surface, is a rich source of unique bioactive compounds with potential therapeutic applications. This review aims to highlight the significance of marine-derived pharmaceuticals in human health, focusing on clinically approved and commercially available medications. The review covers various marine-derived compounds, their structural features, modes of action, and applications in treating diseases, such as cancer, diabetes, and neurodegenerative disorders. The review identifies several marine-derived medications, including, cytarabine (ara-C) for leukemia and lymphoma, vidarabine (ara-A) for viral infections, ziconotide for pain management, trabectedin for cancer treatment, eribulin mesylate for breast cancer. Additionally, the review discusses the potential of marine-derived compounds in managing diabetes and neurodegenerative diseases, such as Alzheimer’s and Parkinson’s.

Keywords: Marine-derived pharmaceuticals, bioactive compounds, cancer, diabetes, neurodegenerative diseases, clinically approved medications.

[This article belongs to Research & Reviews: A Journal of Pharmacognosy ]

How to cite this article:
Bhupendra M. Mahale, Akshata M. Girase, Sandip. A. Tadavi, Javesh. K. Patil, Amitkumar R.Dhankani. Marine-Derived Pharmaceuticals: Unlocking the Ocean’s Potential for Human Health. Research & Reviews: A Journal of Pharmacognosy. 2025; 12(01):1-12.
How to cite this URL:
Bhupendra M. Mahale, Akshata M. Girase, Sandip. A. Tadavi, Javesh. K. Patil, Amitkumar R.Dhankani. Marine-Derived Pharmaceuticals: Unlocking the Ocean’s Potential for Human Health. Research & Reviews: A Journal of Pharmacognosy. 2025; 12(01):1-12. Available from: https://journals.stmjournals.com/rrjopc/article=2025/view=193818


Browse Figures

References

  1. Haque, N., Parveen, S., Tang, T., Wei, J., & Huang, Z. (2022). Marine Natural Products in Clinical Use. Marine Drugs20(8), 528. https://doi.org/10.3390/md20080528
  2.  Ruggieri ,Drugs from the Sea.Science194,491-497(1976).DOI:10.1126/science.9691.
  3. Kijjoa, A., & Sawangwong, P. (2004). Drugs and Cosmetics from the Sea. Marine Drugs, 2(2), 73-82. https://doi.org/10.3390/md202073
  4. Pallela, R.; Yoon, N.-Y.; Kim, S.K. Anti-photoaging and photoprotective compounds derived from marine organisms. Mar. Drugs 2010, 8, 1189–1202
  5. Pallela, R., Na-Young, Y., & Kim, S. -K. (2010). Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms. Marine Drugs, 8(4), 1189-1202. https://doi.org/10.3390/md8041189.
  6. Hickford, S.J.; Blunt, J.W.; Munro, M.H. Antitumour polyether macrolides: Four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp. Bioorg. Med. Chem. 2009, 17,(6)PP: 2199–2203 https://doi.org/10.1016/j.bmc.2008.10.093.
  7. Aoki, S.; Cao, L.; Matsui, K.; Rachmat, R.; Akiyama, S.-i.; Kobayashi, M. Kendarimide A, a novel peptide reversing P-glycoprotein-mediated multidrug resistance in tumor cells, from a marine sponge of Haliclona sp. Tetrahedron 2004, 60,(33)PP: 7053–7059 https://doi.org/10.1016/j.tet.2003.07.020.
  8. Hassan, H.M.; Khanfar, M.A.; Elnagar, A.Y.; Mohammed, R.; Shaala, L.A.; Youssef, D.T.; Hifnawy, M.S.; El Sayed, K.A. Pachycladins A–E, prostate cancer invasion and migration inhibitory Eunicellin-based diterpenoids from the red sea soft coral Cladiella pachyclados. J. Nat. Prod. 2010, Vol (73) Issue (5) 848–853.
  9. Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev 2009;109(7):PP3012-43.
  10. Cappello, E.; Nieri, P. From Life in the Sea to the Clinic: The Marine Drugs Approved and under Clinical Trial. Life 2021, 11, 1390. https://doi.org/10.3390/life 11121390
  11. Donia M, Hamann MT. Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 2003; Vol 3:Issue 6,338-48.
  12. Bergmann W, Stempien MF. Contributions to the study of marine products. XLIII. The nucleosides of sponges. V. The synthesis of spongosine. J Org Chem 1957;Vol 22;12:1557-75.
  13. Murti Y, Agarwal T. Marine derived pharmaceuticals-development of natural health products from marine biodiversity. Int J ChemTech Res 2010;vol 2 issue (4):2198-217.
  14. Vignesh S, Raja A, James RA. Marine drugs: Implication and future studies. Int J Pharmacol 2011;7:22-30.
  15. Anand TP, Bhat AW, Shouche YS, Roy U, Siddharth J, Sarma SP. Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiol Res 2006;161(3):252-62 https://doi.org/10.1016/j.micres.2005.09.002
  16. Thakur NL, Thakur AN, Muller WEG. Marine natural products in drug discovery. Natural Product Radiance 2005;4:471-7. https://nopr.niscpr.res.in/handle/123456789/8143
  17.  Gupta, M., Kumari, A., Rankawat, A., & Rankawat, G. (2023). Marine Drugs: A Review. Asian Journal of Pharmaceutical Research and Development, 11(4), 155–161. https://doi.org/10.22270/ajprd.v11i4.1301
  18. Petit, C.; Sieffermann, J. Testing consumer preferences for iced-coffee: Does thedrinking environment have any influence? Food Quality and Preference, 2007; 18:(1),161-172. https://doi.org/10.1016/j.foodqual.2006.05.008
  19. Mayer AM, Glaser KB, Cuevas C, Jacobs RS. The odyssey of marine pharmaceuticals: A Current pipeline perspective,Trends in Pharmacological Sciences, Volume 31, Issue 6, 255 – 265
  20. Simat, V., Cagalj, M., Skroza, D., Gardini, F., Tabanelli, G., Montanari, C., et al. Sustainable sources for antioxidant and antimicrobial compounds usedin meat and seafood products. Adv. Food Nutr. Res. 2021; 97:55–118. doi: 10.1016/bs.afnr.2021.03.001
  21. Gupta M, Kumari A, Rankawat A, Rankawat G, Marine Drugs: A Review, Asian Journal of Pharmaceutical Research and Development. 2023; 11(4):155-161. DOI: http://dx.doi.org/10.22270/ajprd.v11i4.1301
  22.  American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014 Jan;37 Suppl 1:S81-90. doi: 10.2337/dc14-S081.
  23. Barde, S.R.; Sakhare, R.S.; Kanthale, S.B.; Chandak, P.G.; Jamkhande, P.G. Marine Bioactive Agents: A Short Review on New Marine Antidiabetic Compounds. Asian Pac. J. Trop. Dis. 2015, 5, (1)209–213 https://doi.org/10.1016/S2222-1808(15)60891-X .
  24.  Lordan, S., Ross, R. P., & Stanton, C. (2011). Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases. Marine Drugs9(6), 1056-1100. https://doi.org/10.3390/md9061056.
  25. C. Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Antonie Van Leeuwenhoek 87, 59–63 (2005). https://doi.org/10.1007/s10482-004-6544-x .
  26. Carotenuto, Y.; Esposito, F.; Pisano, F.; Lauritano, C.; Perna, M.; Miralto, A.; Ianora, A. Multi-Generation Cultivation of the Copepod Calanus Helgolandicusina Re-Circulating System. J. Exp. Mar. Biol. Ecol. 2012, 418-419, 46–58 https://doi.org/10.1016/j.jembe.2012.03.014 .
  27.  Ianora, A., Miralto, A., Poulet, S. et al. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429, 403–407 (2004). https://doi.org/10.1038/nature02526.
  28. Sun, Z.; Liu, J.; Zeng, X.; Huangfu, J.; Jiang, Y.; Wang, M.; Chen, F. Protective Actions of Microalgae against Endogenous and Exogenous Advanced Glycation Endproducts (AGEs) in Human Retinal Pigment Epithelial Cells. Food Funct. 2011, 2, 251–258.
  29.  Sharifuddin, Y., Chin, Y. -X., Lim, P. -E., & Phang, S. -M. (2015). Potential Bioactive Compounds from Seaweed for Diabetes Management. Marine Drugs13(8), 5447-5491. https://doi.org/10.3390/md13085447.
  30. Thakur, M., Rachamalla, M., Niyogi, S., Datusalia, A. K., & Flora, S. J. S. (2021). Molecular Mechanism of Arsenic-Induced Neurotoxicity including Neuronal Dysfunctions. International Journal of Molecular Sciences, 22(18), 10077. https://doi.org/10.3390/ijms221810077.
  31.  Thakur, M., Rachamalla, M., Niyogi, S., Datusalia, A. K., & Flora, S. J. S. (2021). Molecular Mechanism of Arsenic-Induced Neurotoxicity including Neuronal Dysfunctions. International Journal of Molecular Sciences, 22(18), 10077. https://doi.org/10.3390/ijms221810077.
  32. Bhardwaj, S.; Kesari, K.K.; Rachamalla, M.; Mani, S.; Ashraf, G.M.; Jha, S.K.; Kumar, P.; Ambasta, R.K.; Dureja, H.; Devkota, H.P.; et al. CRISPR/Cas9 Gene Editing: New Hope for Alzheimer’s Disease Therapeutics. J. Adv.vol 40, 207-221.
  33. Rehni, A.K.; Singh, N.; Rachamalla, M.; Tikoo, K. Modulation of Histone Deacetylase AttenuatesNaloxone-Precipitated Opioid Withdrawal Syndrome. Naunyn Schmiedebergs Arch. Pharmacol. 2012, 385, 605–619.
  34. Alonso, D.; Castro, A.; Martinez, A. Marine Compounds for the Therapeutic Treatment of Neurological Disorders. Expert Opin. Ther. Pat. 2005, 15, 1377–1386.
  35. Luo, D.; Zhang, Q.; Wang, H.; Cui, Y.; Sun, Z.; Yang, J.; Zheng, Y.; Jia, J.; Yu, F.; Wang, X.; et al. Fucoidan Protects against Dopaminergic Neuron Death in Vivo and in Vitro. Eur. J. Pharmacol. 2009, 617, 33–40.
  36. Hannan, M.A.; Dash, R.; Haque, M.N.; Mohibbullah, M.; Sohag, A.A.M.; Rahman, M.A.; Uddin, M.J.; Alam, M.; Moon, I.S. Neuroprotective Potentials of Marine Algae and Their Bioactive Metabolites: Pharmacological Insights and Therapeutic Advances. Mar. Drugs 2020, 18, 347.
  37. Celikler, S.; Vatan, O.; Yildiz, G.; Bilaloglu, R. Evaluation of Anti-Oxidative, Genotoxic and Antigenotoxic Potency of Codium Tomentosum Stackhouse Ethanolic Extract in Human Lymphocytes in Vitro. Food Chem. Toxicol. 2009, 47, 796–801.
  38. Chauthe, S.K.; Mahajan, S.; Rachamalla, M.; Tikoo, K.; Singh, I.P. Synthesis and Evaluation of Linear Furanocoumarinsas Potential Anti-Breast and Anti-Prostate Cancer Agents. Med. Chem. Res. 2015, 24, 2476–2484.
  39. Varun, K.; Mahesh, R.; Prajwal, N.L.; Khatik, G.T.; Sangamwar, A.; Kulbhushan, T.A.; Nair, V. Design and Synthesis of Optically Pure3-Aryl-6-Methyl-2-Thioxotetrahydropyrimidin-4(1H)-Ones as Anti-ProstateCancerAgents. RSC Adv. 2014, 4, 37868–37877.
  40. Jones, P.A.; Baylin, S.B. The Epigenomics of Cancer. Cell 2007, 128, 683–692, doi: 10.1016/j.cell.2007.01.029.
  41. Lujambio, A.; Lowe, S.W. The Microcosmos of Cancer. Nature 2012, 482, 347–355 https://doi.org/10.1038/nature10888.
  42. Bouchet, B.P.; Galmarini, C.M. Cabazitaxel, a New Taxane with Favorable Properties. Drugs Today 2010, 46,(10) 735–742. https://doi.org/10.1358/dot.2010.46.10.1519019
  43. Jensen, P.R.; Fenical, W. Marine microorganisms and drug discovery: Current status and future potential. In Drugs from the Sea; Karger: Basel, Switzerland, 2000; pp. 6–29.
  44. Dayanidhi DL, Thomas BC, Osterberg JS, Vuong M, Vargas G, Kwartler SK, Schmaltz E, Dunphy-Daly MM, Schultz TF, Rittschof D, Eward WC, Roy C and Somarelli JA (2021) Exploring the Diversity of the Marine Environment for New Anti-cancer Compounds. Front. Mar. Sci. 7:614766. doi: 10.3389/fmars.2020.614766

Regular Issue Subscription Review Article
Volume 12
Issue 01
Received 21/10/2024
Accepted 02/01/2025
Published 13/01/2025


My IP

PlumX Metrics