Breakthroughs in Biotechnology for the Regulation of Infectious Diseases

Year : 2025 | Volume : 15 | Issue : 01 | Page : 1 25
    By

    Tanujaa S.R,

  1. Student, Department of Biotechnology, Karunya Institute of Science of Technology, Coimbatore, Tamil Nadu, India

Abstract

Infectious diseases have a heavy impact on both public health and the world’s economies. In most diseases, antibiotic resistance has become widespread over time. A variety of diseases comprising pneumonia, tuberculosis, and gonorrhea go through the same evolutionary processes, which include the formation of drug-resistant pathogens in response to selection pressure from medications and their potential extinction when drug use is ceased. Since the occurrence of drug resistance in serious infections typically coincides with poverty, drug-resistant illnesses including Mycobacterium tuberculosis, and Neisseria gonorrhea pose a threat to widening health disparities worldwide. This affects healthcare significantly and seriously jeopardizes many of the breakthroughs in clinical medicine made in the 20th century, even in settings with ample resources. New tactics and technological platforms inclusive of genomics, proteomics, transcriptomics, nanotechnology, and bioinformatics approaches are desperately needed to address these threats and obstacles. The field of biotechnology and its many applications are crucial in addressing this problem. This study will concentrate on the most recent biotechnological developments, such as the use of Monoclonal antibodies, CRISPR-Cas Technology 3D Bioprinting, and more to address the problem of drug resistance and the difficulties encountered in effective commercialization.

Keywords: Antibiotic resistance, infectious disease, AMR, drug resistance, pathogen, treatment, DNA, RNA, molecular methods

[This article belongs to Research and Reviews : A Journal of Biotechnology ]

How to cite this article:
Tanujaa S.R. Breakthroughs in Biotechnology for the Regulation of Infectious Diseases. Research and Reviews : A Journal of Biotechnology. 2025; 15(01):1-25.
How to cite this URL:
Tanujaa S.R. Breakthroughs in Biotechnology for the Regulation of Infectious Diseases. Research and Reviews : A Journal of Biotechnology. 2025; 15(01):1-25. Available from: https://journals.stmjournals.com/rrjobt/article=2025/view=196647


Browse Figures

References

1. Founou LL, Founou RC, Essack SY. Antibiotic resistance in the food chain: A developing country-perspective. Frontiers in microbiology. 2016;7:1881.
2. Jindal AK, Pandya K, Khan ID. Antimicrobial resistance: A public health challenge. Med J Armed Forces India. 2015;71(2):178–181. doi: 10.1016/j.mjafi.2014.04.011.
3. van Doorn HR. The epidemiology of emerging infectious diseases and pandemics. Medicine (Abingdon). 2021;49(10):659–662. doi: 10.1016/j.mpmed.2021.07.011.
4. Nathwani D, Varghese D, Stephens J, Ansari W, Martin S, Charbonneau C. Value of hospital antimicrobial stewardship programs [ASPs]: A systematic review. Antimicrob Resist Infect Control. 2019;8. doi: 10.1186/s13756-019-0471-0.
5. Fekadu G, Yao J, You JHS. Bedaquiline-based treatment for extensively drug-resistant tuberculosis in South Africa: A cost-effectiveness analysis. PLoS One. 2022;17(8):e0272770. doi: 10.1371/journal.pone.0272770.
6. Saleem Z, Hassali MA, Godman B, et al. Point prevalence surveys of antimicrobial use: A systematic review and the implications. Expert Rev Anti Infect Ther. 2020;18(9):897–910. doi: 10.1080/14787210.2020.1767593.
7. Jamrozik E, Selgelid M. Ethics and drug resistance: Collective responsibility for global public health. Cham: Springer International Publishing; 2020.
8. Silva-Santana G, Silva CMF, Olivella JGB, et al. Worldwide survey of Corynebacterium striatum increasingly associated with human invasive infections, nosocomial outbreak, and antimicrobial multidrug-resistance, 1976–2020. Arch Microbiol. 2021;203(5):1863–1880. doi: 10.1007/s00203-021-02246-1.
9. Rudrapal M, Paudel KR, Pangeni R. Editorial: Drug repurposing and polypharmacology: A synergistic approach in multi-target-based drug discovery. Front Pharmacol. 2022;13. doi: 10.3389/fphar.2022.1101007.
10. Sautter RL, Halstead DC. Need of the hour: Addressing the challenges of multi-drug-resistant health care-associated infections and the role of the laboratory in lowering infection rates. Clin Microbiol Newsl. 2018;40(2):11–16. doi: 10.1016/j.clinmicnews.2018.01.001.
11. Olaru ID, Tacconelli E, Yeung S, Ferrand RA, Stabler RA, Hopkins H, et al. The association between antimicrobial resistance and HIV infection: A systematic review and meta-analysis. Clin Microbiol Infect. 2021;27(6):846–853. doi: 10.1016/j.cmi.2021.03.026.
12. Connor BA, Dawood R, Riddle MS, Hamer DH. Cholera in travellers: A systematic review. J Travel Med. 2019;26. doi: 10.1093/jtm/taz085.
13. Singhai M, Dhar Shah Y, Gupta N, Bala M, Kulsange S, Kataria J, et al. Chronicle down memory lane: India’s sixty years of plague experience. Indian J Med Microbiol. 2021;39(3):279–285. doi: 10.1016/j.ijmmb.2021.06.007.
14. Nicastri E, Kobinger G, Vairo F, et al. Ebola virus disease: Epidemiology, clinical features, management, and prevention. Infect Dis Clin North Am. 2019;33(4):953–976. doi: 10.1016/j.idc.2019.08.005.
15. Zheng R, Wang Q, Wu R, Paradkar PN, Hoffmann AA, Wang G-H.. Holobiont perspectives on tripartite interactions among microbiota, mosquitoes, and pathogens. ISME J. 2023;17(5):1143–1152. doi: 10.1038/s41396-023-01436-7.
16. Zheng W, Sun W, Simeonov A. Drug repurposing screens and synergistic drug‐combinations for infectious diseases. Br J Pharmacol. 2018;175(2):181–191. doi: 10.1111/bph.13895.
17. Howard DH, Scott RD II, Packard R, Jones D. The global impact of drug resistance. Clin Infect Dis. 2003;36(Suppl 1):S4–S10. doi: 10.1086/344656.
18. Snowden FM. Emerging and reemerging diseases: A historical perspective. Immunol Rev. 2008;225:9–26. doi: 10.1111/j.1600-065x.2008.00677.x.
19. Morens DM, Fauci AS. Emerging infectious diseases: Threats to human health and global stability. PLoS Pathog. 2013;9(7):e1003467. doi: 10.1371/journal.ppat.1003467.
20. Joy M, Krishnaveni M. A review of epidemic surveillance systems for infectious diseases. In: 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). IEEE; 2022.
21. Choi J, Cho Y, Shim E, Woo H. Web-based infectious disease surveillance systems and public health perspectives: A systematic review. BMC Public Health. 2016;16. doi: 10.1186/s12889-016-3893-0.
22. Carrion M, Madoff LC. ProMED-mail: 22 years of digital surveillance of emerging infectious diseases. Int Health. 2017;9(3):177–183. doi: 10.1093/inthealth/ihx014.
23. Gu Y, Zhang T, Chen H, Wang F, Pu Y, Gao C, et al. Mini review on flexible and wearable electronics for monitoring human health information. Nanoscale Res Lett. 2019;14:263. doi: 10.1186/s11671-019-3084-x.
24. Burnham JP, Olsen MA, Stwalley D, Kwon JH, Babcock HM, Kollef MH. Infectious diseases consultation reduces 30-day and 1-year all-cause mortality for multidrug-resistant organism infections. Open Forum Infect Dis. 2018;5:ofy026. doi: 10.1093/ofid/ofy026.
25. O’Brien TF. Emergence, spread, and environmental effect of antimicrobial resistance: how use of an antimicrobial anywhere can increase resistance to any antimicrobial anywhere else. Clin Infect Dis. 2002;34(Suppl 3):S78–S84. doi: 10.1086/340244.
26. King DA, Peckham C, Waage JK, et al. Infectious diseases: preparing for the future. Science. 2006;313(5792):1392–1393. doi: 10.1126/science.1129134.
27. Maddah N, Verma A, Almashmoum M, Ainsworth J. Effectiveness of public health digital surveillance systems for infectious disease prevention and control at mass gatherings: Systematic review. J Med Internet Res. 2023;25:e44649. doi: 10.2196/44649.
28. Sun G, Trung NV, Hoi LT, Hiep PT, Ishibashi K, Matsui T.. Visualisation of epidemiological map using an Internet of Things infectious disease surveillance platform. Crit Care. 2020;24:400. doi: 10.1186/s13054-020-03132-w.
29. Kang W-T, Xu H, Liao Y, Guo Q, Huang Q, Xu Y, et al. Qualitative and quantitative detection of multiple sexually transmitted infection pathogens reveals distinct associations with cervicitis and vaginitis. Microbiol Spectr. 2022;10:e0196622. doi: 10.1128/spectrum.01966-22.
30. Unemo M, Bradshaw CS, Hocking JS, de Vries HJC, Francis SC, Mabey D, et al. Sexually transmitted infections: Challenges ahead. Lancet Infect Dis. 2017;17:e235–e279. doi: 10.1016/s1473-3099(17)30310-9.
31. Unemo M, Golparian D, Shafer WM. Challenges with gonorrhea in the era of multi-drug and extensively drug resistance – are we on the right track? Expert Rev Anti Infect Ther. 2014;12(6):653–656. doi: 10.1586/14787210.2014.906902.
32. Centers for Disease Control and Prevention. Basic information about ARG – STD information from CDC. CDC. Available at https://www.cdc.gov/std/gonorrhea/drug-resistant/basic.htm [Accessed on October, 2023].
33. Rice PA, Shafer WM, Ram S, Jerse AE. Neisseria gonorrhoeae: drug resistance, mouse models, and vaccine development. Annu Rev Microbiol. 2017;71:665–686. doi: 10.1146/annurev-micro-090816-093530.
34. Unemo M, Nicholas RA. Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea. Future Microbiol. 2012;7(12):1401–1422. doi: 10.2217/fmb.12.117.
35. Phillips AN, Stover J, Cambiano V, Nakagawa F, Jordan MR, Pillay D, et al. Impact of HIV drug resistance on HIV/AIDS-associated mortality, new infections, and antiretroviral therapy program costs in sub-Saharan Africa. J Infect Dis. 2017;215(9):1362–1365. doi: 10.1093/infdis/jix089.
36. Chinnambedu RS, Marimuthu RR, Sunil SS, Amrose P, Ramachandran V, Pachamuthu B. et al. Changing antibiotic resistance profile of Staphylococcus aureus isolated from HIV patients (2012–2017) in Southern India. J Infect Public Health. 2020;13(1):75–79. doi: 10.1016/j.jiph.2019.06.015.
37. Donkor E, Kotey F, Dayie N, Duodu S, Tetteh-Quarcoo PB, Osei M-M, et al. Colonization of HIV-infected children with methicillin-resistant Staphylococcus aureus. Pathogens. 2019;8(1):35. doi: 10.3390/pathogens8010035.
38. Soroka M, Wasowicz B, Rymaszewska A. Loop-mediated isothermal amplification (LAMP): The better sibling of PCR? Cells. 2021;10:1931. doi: 10.3390/cells10081931.
39. ResearchGate. A critical review on PCR, its types, and applications. Available at https://www.researchgate.net/publication/266971527_a_critical_review_on_PCR_its_types_and_applications [Accessed on October, 2023].
40. Parashar D, Chauhan DS, Sharma VD, Katoch VM. Applications of real-time PCR technology to mycobacterial research. Indian J Med Res. 2006;124.
41. Rajalakshmi S. Different types of PCR techniques and their applications. Available at https://faculty.ksu.edu.sa/sites/default/files/different_types_of_pcr_techniques_and_its_applications.pdf [Accessed on October, 2023].
42. Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE. Multiplex PCR: Optimization and application in diagnostic virology. Clin Microbiol Rev. 2000;13(4):559. doi: 10.1128/cmr.13.4.559-570.2000.
43. Green MR, Sambrook J. Inverse polymerase chain reaction (PCR). Cold Spring Harb Protoc. 2019;2019:db.prot095166. doi: 10.1101/pdb.prot095166.
44. Karunasagar I. Bacteria: Vibrio vulnificus. In: Encyclopedia of Food Safety. Elsevier; 2014. pp. 564–569.
45. Olsson M, Strålin K, Holmberg H. Clinical significance of nested polymerase chain reaction and immunofluorescence for detection of Pneumocystis carinii pneumonia. Clin Microbiol Infect. 2001;7(10):492–497. doi: 10.1046/j.1469-0691.2001.00309.x.
46. Bièche I, Onody P, Laurendeau I, Olivi M, Vidaud D, Lidereau R, et al. Real-time reverse transcription-PCR assay for future management of ERBB2-based clinical applications. Clin Chem. 1999;45:1148–1156.
47. Scanlon KJ, Kashani-Sabet M. Utility of the polymerase chain reaction in detection of gene expression in drug-resistant human tumors. J Clin Lab Anal. 1989;3(5):323–329. doi: 10.1002/jcla.1860030512.
48. Cason C, D’Accolti M, Soffritti I, Mazzacane S, Comar M, Caselli E. Next-generation sequencing and PCR technologies in monitoring the hospital microbiome and its drug resistance. Front Microbiol. 2022;13:969863. doi: 10.3389/fmicb.2022.969863.
49. Kouamou V, Ndhlovu CE, Katzenstein D, Manasa J. Rapid HIV-1 drug resistance testing in a resource-limited setting: The Pan Degenerate Amplification and Adaptation assay (PANDAA). Pan Afr Med J. 2021;40. doi: 10.11604/pamj.2021.40.57.28558.
50. The Pan Degenerate Amplification and Adaptation (PANDAA) assay: A solution for HIV-1 drug resistance testing in a resource-limited setting? J Allergy Infect Dis. 2021;2. doi: 10.46439/allergy.2.020.
51. Denaro M, Ghandour H, Long JE, et al. Validation of PANDAA qDx HIVDR RTI: a simple and scalable real-time PCR-based HIV drug resistance genotyping kit for the management of NNRTI-based ART failure. Available at https://programme.ias2019.org/PAGMaterial/eposters/2172.pdf [Accessed on October, 2023].
52. Schmitt S, Stephan R, Huebschke E, Schaefle D, Merz A, Johler S.. DNA microarray-based characterization and antimicrobial resistance phenotypes of clinical MRSA strains from animal hosts. J Vet Sci. 2020;21:e54. doi: 10.4142/jvs.2020.21.e54.
53. Protonotariou E, Meletis G, Papadopoulou D, Kachrimanidou M, Toptsi L, Skoura L. Evaluation of the “AMR Direct Flow Chip Kit” DNA microarray for detecting antimicrobial resistance genes directly from rectal and nasopharyngeal clinical samples upon ICU admission. Enferm Infecc Microbiol Clin (Engl). 2021;39(5):276–278. doi: 10.1016/j.eimce.2020.05.014.
54. Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts CJ, et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med. 1998;4(11):1293–1301. doi: 10.1038/3282.
55. Hughes TR, Roberts CJ, Dai H, Jones AR, Meyer MR, Slade D, et al. Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet. 2000;25(3):333–337. doi: 10.1038/77116.
56. More M, Gutiérrez G, Rothschild M, Bertolini F, de Leon FAP. Evaluation of SNP genotyping in alpacas using the Bovine HD Genotyping Beadchip. Front Genet. 2019;10. doi: 10.3389/fgene.2019.00361.
57. Onogi A, Watanabe T, Ogino A, Kurogi K, Togashi K. Genomic prediction with non-additive effects in beef cattle: Stability of variance component and genetic effect estimates against population size. BMC Genomics. 2021;22(1):512. doi: 10.1186/s12864-021-07792-y.
58. Jenkins CA, Dog Biomedical Variant Database Consortium, Schofield EC, Mellersh CS, Risio LD, Ricketts SL, Improving the resolution of canine genome-wide association studies using genotype imputation: A study of two breeds. Anim Genet. 2021;52(6):703–713. doi: 10.1111/age.13117.
59. Single nucleotide polymorphisms in Bison bison identified by the GGP Bovine 50K SNP assay. Available at https://buscaintegrada.ufrj.br/Record/oai:doaj.org-article:dfb8a45b920246c6a0316
fb5b88d8b52 [Accessed on October, 2023].
60. Ferraz JBS, Wu X-L, Li H, Xu J, Ferretti R, Simpson B, et al. Development and evaluation of a low-density single-nucleotide polymorphism chip specific to Bos indicus cattle. Anim Prod Sci. 2020;60(12):1769–1776. doi: 10.1071/an19396.
61. Gras MA, Grosu H. Informational steps and tools in genomic selection of livestock: A review. Available at https://ibna.ro/arhiva/08-AZ-156-Mihail_Gras_28-02-2020.pdf [Accessed on October, 2023].
62. Chartrand C, Leeflang MMG, Minion J, Brewer T, Pai M. Accuracy of rapid influenza diagnostic tests: A meta-analysis. Ann Intern Med. 2012;156(7):500–511. doi: 10.7326/0003-4819-156-7-201204030-00403.
63. Kim H, Kang H, Kim H-N, Kim H, Moon J, Guk K, et al. Development of 6E3 antibody-mediated SERS immunoassay for drug-resistant influenza virus. Biosens Bioelectron. 2021;187:113324. doi: 10.1016/j.bios.2021.113324.
64. Yi Z, Xu X, Meng X, Liu C, Zhou Q, Gong D, et al. Emerging markers for antimicrobial resistance monitoring. Chin Chem Lett. 2023;34:108238. doi: 10.1016/j.cclet.2023.108238.
65. Lee WS, Lee S, Kang T, Ryu C-M, Jeong J. Detection of ampicillin-resistant E. coli using novel nanoprobe-combined fluorescence in situ hybridization. Nanomaterials (Basel). 2019;9(5):750. doi: 10.3390/nano9050750.
66. Dillon L, Dimonaco NJ, Creevey CJ. O04 Understanding the key role of accessory genes in AMR phenotype through interpretable machine learning techniques. JAC Antimicrob Resist. 2023;5:dlad066.004. doi: 10.1093/jacamr/dlad066.004.
67. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother. 2019;63(11):e00483-19. doi: 10.1128/aac.00483-19.
68. Hendriksen RS, Bortolaia V, Tate H, Tyson GH, Aarestrup FM, McDermott PF. Using genomics to track global antimicrobial resistance. Front Public Health. 2019;7:242. doi: 10.3389/fpubh.2019.00242.
69. Peng B, Li H, Peng X. Proteomics approach to understand bacterial antibiotic resistance strategies. Expert Rev Proteomics. 2019;16(10):829–839. doi: 10.1080/14789450.2019.1681978.
70. Staub I, Sieber SA. β-lactam probes as selective chemical-proteomic tools for the identification and functional characterization of resistance-associated enzymes in MRSA. J Am Chem Soc. 2009;131(17):6271–6276. doi: 10.1021/ja901304n.
71. Horgan RP, Kenny LC. ‘Omic’ technologies: Genomics, transcriptomics, proteomics, and metabolomics. Obstet Gynaecol. 2011;13(3):189–195. doi: 10.1576/toag.13.3.189.27672.
72. Cabral-Marques O, Schimke LF, de Oliveira EB Jr, El Khawanky N, Ramos RN, l-Ramadi BK, et al. Flow cytometry contributions for the diagnosis and immunopathological characterization of primary immunodeficiency diseases with immune dysregulation. Front Immunol. 2019;10:2742. doi: 10.3389/fimmu.2019.02742.
73. Ndagi U, Falaki AA, Abdullahi M, Lawal MM, Soliman ME. Antibiotic resistance: bioinformatics-based understanding as a functional strategy for drug design. RSC Adv. 2020;10(31):18451–18468. doi: 10.1039/d0ra01484b.
74. Kavvas ES, Yang L, Monk JM, Heckmann D, Palsson BO. A biochemically-interpretable machine learning classifier for microbial GWAS. Nat Commun. 2020;11:1–11. doi: 10.1038/s41467-020-16310-9.
75. Melo MCR, Maasch JRMA, de la Fuente-Nunez C. Accelerating antibiotic discovery through artificial intelligence. Commun Biol. 2021;4:1–13. doi: 10.1038/s42003-021-02586-0.
76. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J, Keane JA, et al. ARIBA: Rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom. 2017;3:e000131. doi:10.1099/mgen.0.000131.
77. Feldgarden M, Brover V, Haft DH, Prasad ABm Slotta DJ, Tolstoy I, et al. Using the NCBI AMRFinder tool to determine antimicrobial resistance genotype-phenotype correlations within a collection of NARMS isolates. bioRxiv. 2019. doi: 10.1128/AAC.00483-19.
78. Crossette E, Gumm J, Langenfeld K, Raskin L, Duhaime M, Wigginton K. Metagenomic quantification of genes with internal standards. mBio. 2021;12:e03173-20. doi:10.1128/mbio.03173-20.
79. Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6(1):23. doi:10.1186/s40168-018-0401-z.
80. Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM. PointFinder: A novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother. 2017;72:2764–2768. doi: 10.1093/jac/dkx217.
81. Zhang F, Wang M, Xi J, Yang J, Li A. A novel heterogeneous network-based method for drug response prediction in cancer cell lines. Sci Rep. 2018;8(1):3355. doi: 10.1038/s41598-018-21622-4.
82. Qi R, Zou Q. Trends and potential of machine learning and deep learning in drug study at single-cell level. Research (Wash DC). 2023;6:0050. doi: 10.34133/research.0050.
83. Berglund F, Österlund T, Boulund F, Marathe NP, Larsson DGJ, Kristiansson E. Identification and reconstruction of novel antibiotic resistance genes from metagenomes. Microbiome. 2019;7(1):52. doi: 10.1186/s40168-019-0670-1.
84. Marini S, Boucher C, Noyes N, Prosperi M. The K-mer antibiotic resistance gene variant analyzer (KARGVA). Front Microbiol. 2023;14:1060891. doi: 10.3389/fmicb.2023.1060891.
85. Lakin SM, Kuhnle A, Alipanahi B, Noyes NR, Dean C, Muggli M, et al. Hierarchical Hidden Markov models enable accurate and diverse detection of antimicrobial resistance sequences. Commun Biol. 2019;2:294. doi: 10.1038/s42003-019-0545-9.
86. Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG, Boucher C, et al. MEGARes 2.0: A database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 2020;48(D1):D561–D569. doi: 10.1093/nar/gkz1010.
87. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattori V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–500. doi: 10.1093/jac/dkaa345.
88. De R. Metagenomics: Aid to combat antimicrobial resistance in diarrhea. Gut Pathog. 2019;11:47. doi: 10.1186/s13099-019-0331-8.
89. Sahu T, Ratre YK, Chauhan S, Lvks B, Nair MP, Verma HK. Nanotechnology-based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol. 2021;63(102487):1–15. doi: 10.1016/j.jddst.2021.102487.
90. Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence. 2011;2:395–401. doi: 10.4161/viru.2.5.17035.
91. Jain S, Nehra M, Kumar R, Dilbaghi N, Hu T, Kumar S, et al. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens Bioelectron. 2021;179:113074. doi:1 0.1016/j.bios.2021.113074.
92. Dubey AK, Kumar Gupta V, Kujawska M, Orive G, Kim N-Y, Li C-Z, et al. Exploring nano-enabled CRISPR-Cas-powered strategies for efficient diagnostics and treatment of infectious diseases. J Nanostructure Chem. 2022;12(5):833–864. doi: 10.1007/s40097-022-00472-7.
93. Ahmed S, Ning J, Peng D, Chen T, Ahmad I, Ali A, et al. Current advances in immunoassays for the detection of antibiotics residues: A review. Food Agric Immunol. 2020;31:268–290. doi:10.1080/09540105.2019.1707171.
94. Ni Y, Rosier BJHM, van Aalen EA, Hanckmann ETL, Biewenga L, Pistikou A-MM, et al. A plug-and-play platform of ratiometric bioluminescent sensors for homogeneous immunoassays. Nat Commun. 2021;12(1):4586. doi:10.1038/s41467-021-24874-3.
95. Sulovari A, Ninomiya MJ, Beck CA, Ricciardi BF, Ketonis C, Mesfin A, et al. Clinical utilization of species-specific immunoassays for identification of Staphylococcus aureus and Streptococcus agalactiae in orthopedic infections. J Orthop Res. 2021;39:2141–2150. doi: 10.1002/jor.24935.
96. Haddad NS, Nozick S, Kim G, Ohanian S, Kraft C, Rebolledo PA, et al. Novel immunoassay for diagnosis of ongoing Clostridioides difficile infections using serum and medium enriched for newly synthesized antibodies (MENSA). J Immunol Methods. 2021;492:112932. doi:10.1016/j.jim.2020.112932.
97. Saylor C, Dadachova E, Casadevall A. Monoclonal antibody-based therapies for microbial diseases. Vaccine. 2009;27:G38–G46. doi: 10.1016/j.vaccine.2009.09.105.
98. Thakare R, Dasgupta A, Chopra S. Bezlotoxumab for the treatment of Clostridium difficile-associated diarrhea. Drugs Today (Barc). 2017;53:385–392. doi: 10.1358/dot.2017.53.7.2655240.
99. Yamamoto BJ, Shadiack AM, Carpenter S, Sanford D, Henning LN, Gonzales N, et al. Obiltoxaximab prevents disseminated Bacillus anthracis infection and improves survival during pre- and postexposure prophylaxis in animal models of inhalational anthrax. Antimicrob Agents Chemother. 2016;60:5796–5805. doi: 10.1128/aac.01102-16.
100. Farahnik B, Beroukhim K, Zhu TH, Abrouk M, Nakamura M, Singh R, et al. Ixekizumab for the treatment of psoriasis: A review of phase III trials. Dermatol Ther (Heidelb). 2016;6:25–37. doi: 10.1007/s13555-016-0102-0.
101. Blair HA. Emicizumab: A review in haemophilia A. Drugs. 2019;79:1697–1707. doi: 10.1007/s40265-019-01200-2.
102. Wilcox MH, Gerding DN, Poxton IR, Kelly C, Nathan R, Birch T, et al. Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med. 2017;376(4):305–317. doi:10.1056/nejmoa1602615.
103. Beccari MV, Mogle BT, Sidman EF, Mastro KA, Asiago-Reddy E, Kufel WD. Ibalizumab, a novel monoclonal antibody for the management of multidrug-resistant HIV-1 infection. Antimicrob Agents Chemother. 2019;63(6):e00110-19. doi: 10.1128/aac.00110-19.
104. Shadman KA, Wald ER. A review of palivizumab and emerging therapies for respiratory syncytial virus. Expert Opin Biol Ther. 2011;11:1455–1467. doi: 10.1517/14712598.2011.608062.
105. Shivalingaiah AH, Shankaraiah RH, Hanumanthaiah AND. Safety of new indigenous human Rabies Monoclonal Antibody (RMAb) for post exposure prophylaxis. Indian J Community Health. 2018;30:196–201. doi: 10.47203/ijch.2018.v30i03.004.
106. Mueller SM, Itin P, Haeusermann P. Muckle-Wells syndrome effectively treated with canakinumab: Is the recommended dosing schedule mandatory? Dermatology. 2011;223:113–118. doi:10.1159/000331580.
107. Navarra SV, Guzmán RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9767):721–731. doi: 10.1016/s0140-6736(10)61354-2.
108. Scully M, Cataland SR, Peyvandi F, Coppo P, Knöbl P, Hovinga JAK, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380(4):335–346. doi: 10.1056/nejmoa1806311.
109. Loftus EV Jr, Colombel J-F, Feagan BG, Vermeire S, Sandborn WJ, Sands BE, et al. Long-term efficacy of vedolizumab for ulcerative colitis. J Crohns Colitis. 2016;11(4):400–411. doi: 10.1093/ecco-jcc/jjw177.
110. Munguia J, Nizet V. Pharmacological targeting of the host–pathogen interaction: Alternatives to classical antibiotics to combat drug-resistant superbugs. Trends Pharmacol Sci. 2017;38:473–483. doi: 10.1016/j.tips.2017.02.003.
111. Ramamurthy D, Nundalall T, Cingo S, Mungra N, Karaan M, Naran K. Recent advances in immunotherapies against infectious diseases. Immunother Adv. 2021;1(1):ltaa007. doi: 10.1093/immadv/ltaa007.
112. Junaid M, Thirapanmethee K, Khuntayaporn P, Chomnawang MT. CRISPR-based gene editing in Acinetobacter baumannii to combat antimicrobial resistance. Pharmaceuticals (Basel). 2023;16:920. doi: 10.3390/ph160709.
113. Hille F, Charpentier E. CRISPR-Cas: Biology, mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150496. doi: 10.1098/rstb.2015.0496.
114. Uthayakumar D, Sharma J, Wensing L, Shapiro RS. CRISPR-based genetic manipulation of Candida species: Historical perspectives and current approaches. Front Genome Ed. 2021;2. doi: 10.3389/fgeed.2020.606281.
115. Stocco G, Lucafò M, Decorti G. Pharmacogenomics of antibiotics. Int J Mol Sci. 2020;21:5975. doi: 10.3390/ijms21175975.
116. Dlozi PN, Gladchuk A, Crutchley RD, Keuler N, Coetzee R, Dube A. Cathelicidins and defensins antimicrobial host defense peptides in the treatment of TB and HIV: Pharmacogenomic and nanomedicine approaches towards improved therapeutic outcomes. Biomed Pharmacother. 2022;151:113189. doi: 10.1016/j.biopha.2022.113189.
117. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release. 2015;217:308–314. doi: 10.1016/j.jconrel.2015.09.028.
118. Varghese R, Sood P, Salvi S, Karsiya J, Kumar D. 3D printing in the pharmaceutical sector: Advances and evidences. Sens Int. 2022;3:100177. doi: 10.1016/j.sintl.2022.100177.
119. Qureshi A, Niazi JH. Biosensors for detecting viral and bacterial infections using host biomarkers: A review. Analyst. 2020;145:7825–7848. doi: 10.1039/d0an00896f.


Regular Issue Subscription Review Article
Volume 15
Issue 01
Received 04/09/2024
Accepted 13/12/2024
Published 01/02/2025
Publication Time 150 Days


Login


My IP

PlumX Metrics