Nanotechnology-Driven Drug Delivery: A Comprehensive Review of Current Trends and Future Directions


Year : 2025 | Volume : 15 | Issue : 01 | Page : 24-46
    By

    Mehak Khanum,

  • Jennifer.S,

  • Zaid khan,

  1. Research Scholar, Department of Pharmaceutics, Faculty of Pharmacy, St Jhon’s Pharmacy College, Bangalore 560104, Karnataka, India
  2. Research Scholar, Department of Pharmacy Practice, Faculty of Pharmacy, Aditya Bangalore Institute of Pharmacy Education and Research, Bangalore, Karnataka, India
  3. Research Scholar, Department of Pharmacy Practice, Faculty of Pharmacy, Aditya Bangalore Institute of Pharmacy Education and Research, Bangalore, India

Abstract

Nanotechnology has revolutionized drug delivery systems, offering profound advancements in precision, efficiency, and targeted therapeutic interventions. This review examines the revolutionary influence of nanotechnology on medical therapies, focusing on advancements, such as precise drug delivery, improved solubility, and responsive treatment systems. These advancements have significantly improved treatment efficacy and minimize side effects, particularly in oncology and chronic disease management. The development of nanoparticles designed for specific cell targeting and environmental responsiveness has been pivotal in enhancing therapeutic outcomes. Although significant progress has been made, obstacles like biocompatibility, scalable manufacturing, and regulatory challenges persist. Future advancements will depend on addressing these issues, with ongoing research needed to enhance nanoparticle targeting, ensure safety, and streamline production. The integration of artificial intelligence and nanorobotics presents promising opportunities for optimizing treatment precision and personalization. Bridging the gap between research and clinical application through improved preclinical models, adaptive regulatory frameworks, and global collaborations will be essential in realizing the full potential of nanotechnology for more effective and personalized medical treatments.

Keywords: Nanotechnology, drug delivery systems, targeted drug delivery, nanoparticles, regulatory challenges, AI-driven systems, FDA-approved nanomedicines

[This article belongs to Journal of Nanoscience, NanoEngineering & Applications ]

How to cite this article:
Mehak Khanum, Jennifer.S, Zaid khan. Nanotechnology-Driven Drug Delivery: A Comprehensive Review of Current Trends and Future Directions. Journal of Nanoscience, NanoEngineering & Applications. 2025; 15(01):24-46.
How to cite this URL:
Mehak Khanum, Jennifer.S, Zaid khan. Nanotechnology-Driven Drug Delivery: A Comprehensive Review of Current Trends and Future Directions. Journal of Nanoscience, NanoEngineering & Applications. 2025; 15(01):24-46. Available from: https://journals.stmjournals.com/jonsnea/article=2025/view=192308


Browse Figures

References

  1. Nikam A, Patil A, Magdum C. Nanotechnology: overview and its application. Asian J Pharm Technol. 2021;11(4):293–
  2. Omietimi HB, Afolalu SA, Kayode JF, Monye SI, Lawal SL, Emetere ME. An overview of nanotechnology and its application. E3S Web Conf. 2023;391:01079.
  3. Cheng HN, Doemeny LJ, Geraci CL, Grob Schmidt D. Nanotechnology overview: Opportunities and challenges. In: Nanotechnology: Delivering on the Promise Volume 1. Washington, DC: American Chemical Society; 2016. p. 1–
  4. Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, et al. Nanotechnology advances in the detection and treatment of cancer: an overview. Nanotheranostics. 2022;6(4):400.
  5. Arora S, Murmu G, Mukherjee K, Saha S, Maity D. A comprehensive overview of nanotechnology in sustainable agriculture. J Biotechnol. 2022;355:21–
  6. Nikam A, Patil A, Magdum C. Nanotechnology: overview and its application. Asian J Pharm Technol. 2021;11(4):293–
  7. Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, et al. Nanotechnology advances in the detection and treatment of cancer: an overview. Nanotheranostics. 2022;6(4):400.
  8. Omietimi HB, Afolalu SA, Kayode JF, Monye SI, Lawal SL, Emetere ME. .
  9. Cheng HN, Doemeny LJ, Geraci CL, Grob Schmidt D. Nanotechnology overview: Opportunities and challenges. In: Nanotechnology: Delivering on the Promise Volume 1. Washington, DC: American Chemical Society; 2016. p. 1–
  1. Fissell WH. What is nanotechnology? Adv Chronic Kidney Dis. 2013;20(6):452–
  2. Balogun OD, Ayo-Farai O, Ogundairo O, Maduka CP, Okongwu CC, Babarinde AO, et al. Innovations in drug delivery systems: a review of the pharmacist’s role in enhancing efficacy and patient compliance. World J Adv Res Rev. 2023;20(3):1268–
  3. Cheng HN, Doemeny LJ, Geraci CL, Grob Schmidt D. Nanotechnology overview: Opportunities and challenges. In: Nanotechnology: Delivering on the Promise Volume 1. Washington, DC: American Chemical Society; 2016. p. 1-12.
  4. Omietimi HB, Afolalu SA, Kayode JF, Monye SI, Lawal SL, Emetere ME. .
  5. Gondim BL, da Silva Catarino J, de Sousa MA, de Oliveira Silva M, Lemes MR, de Carvalho-Costa TM, et al. Nanoparticle-mediated drug delivery: blood-brain barrier as the main obstacle to treating infectious diseases in CNS. Curr Pharm Des. 2019;25(37):3983–
  6. Matoba T, Egashira K. Nanoparticle-mediated drug delivery system for cardiovascular disease. Int Heart J. 2014;55(4):281–
  7. Hersh AM, Alomari S, Tyler BM. Crossing the blood-brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. Int J Mol Sci. 2022;23(8):4153.
  8. Tang L, Mei Y, Shen Y, He S, Xiao Q, Yin Y, et al. Nanoparticle-mediated targeted drug delivery to remodel tumor microenvironment for cancer therapy. Int J Nanomedicine. 2021;16:5811–
  9. Balogun OD, Ayo-Farai O, Ogundairo O, Maduka CP, Okongwu CC, Babarinde AO, et al. Innovations in drug delivery systems: a review of the pharmacist’s role in enhancing efficacy and patient compliance. World J Adv Res Rev. 2023;20(3):1268–
  10. Shah A, Aftab S, Nisar J, Ashiq MN, Iftikhar FJ. Nanocarriers for targeted drug delivery. J Drug Deliv Sci Technol. 2021;62:102426.
  11. Wakaskar R. Types of nanocarriers–formulation method and applications. J Bioequiv Availab. 2017;9:10000e77.
  12. Bhatia S, Bhatia S. Nanoparticles: types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems: nanoparticles, plants, and algae. 2016:33–93.
  13. Ojah AN, Das T. Different types of nanocarriers for targeted treatment of HIV/AIDS. Int J Curr Pharm Res. 2019;66–
  14. Ng PQ, Ling LS, Chellian J, Madheswaran T, Panneerselvam J, Kunnath AP, et al. Applications of nanocarriers as drug delivery vehicles for active phytoconstituents. Curr Pharm Des. 2020;26(36):4580–
  15. Balogun OD, Ayo-Farai O, Ogundairo O, Maduka CP, Okongwu CC, Babarinde AO, et al. Innovations in drug delivery systems: a review of the pharmacist’s role in enhancing efficacy and patient compliance. World J Adv Res Rev. 2023;20(3):1268–
  16. Tang L, Mei Y, Shen Y, He S, Xiao Q, Yin Y, et al. Nanoparticle-mediated targeted drug delivery to remodel tumor microenvironment for cancer therapy. Int J Nanomedicine. 2021;5811–
  17. Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green Int J Nanomedicine. 2017;2957–78.
  18. Matoba T, Egashira K. Nanoparticle-mediated drug delivery system for cardiovascular disease. Int Heart J. 2014;55(4):281–
  19. Omietimi HB, Afolalu SA, Kayode JF, Monye SI, Lawal SL, Emetere ME. An overview of nanotechnology and its application. E3S Web Conf. 2023;391:01079.
  20. Kesharwani P, editor. Nanotechnology-based targeted drug delivery systems for lung cancer. Academic Press; 2019.
  21. Güven E. Nanotechnology-based drug delivery systems in orthopedics. Joint Dis Rel Surg. 2021;32(1):267.
  22. Tang L, Mei Y, Shen Y, He S, Xiao Q, Yin Y, Xu Y, Shao J, Wang W, Cai Z. Nanoparticle-mediated targeted drug delivery to remodel tumor microenvironment for cancer therapy. Int JNanomed. 2021;5811–
  23. Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W. Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics. 2021;13(8):1151.
  24. Huang X, Ma Y, Li Y, Han F, Lin W. Targeted drug delivery systems for kidney diseases. FrontBioeng Biotech. 2021;9:683247.
  25. Alghamdi MA, Fallica AN, Virzì N, Kesharwani P, Pittalà V, Greish K. The promise of nanotechnology in personalized medicine. JPersonal Med. 2022;12(5):673.
  26. Herrmann IK, Rösslein M. Personalized medicine: the enabling role of nanotechnology. Nanomedicine. 2016;11(1):1–
  27. De Matteis L, Martín-Rapún R, de la Fuente JM. Nanotechnology in personalized medicine: a promising tool for Alzheimer’s disease treatment. Curr Med Chem. 2018;25(35):4602–
  28. Ahmad RM, Mohammad M. Towards the use of nanotechnology and pharmacogenomics in personalized medicine. 2021;3(12):68992
  29. Marson D, Laurini E, Aulic S, Fermeglia M, Pricl S. Self-assembling nanotechnology for cancer personalized medicine. Chem Eng Trans. 2019;74:1549–
  30. Tang Q, Yu B, Gao L, Cong H, Song N, Lu C. Stimuli responsive nanoparticles for controlled anti-cancer drug release. Curr Med Chem. 2018;25(16):1837–
  31. Balogun OD, Ayo-Farai O, Ogundairo O, Maduka CP, Okongwu CC, Babarinde AO, Sodamade OT. Innovations in drug delivery systems: a review of the pharmacist’s role in enhancing efficacy and patient compliance. World JAdv Res Rev. 2023;20(3):1268–
  32. Longo R, Gorrasi G, Guadagno L. Electromagnetically stimuli-responsive nanoparticles-based systems for biomedical applications: recent advances and future perspectives. Nanomaterials. 2021;11(4):848.
  33. An X, Zhu A, Luo H, Ke H, Chen H, Zhao Y. Rational design of multi-stimuli-responsive nanoparticles for precise cancer therapy. ACS 2016;10(6):5947–58.
  34. Thomas RG, Surendran SP, Jeong YY. Tumor microenvironment-stimuli responsive nanoparticles for anticancer therapy. FrontMol Biosci. 2020;7:610533.
  35. Chehelgerdi M, Chehelgerdi M, Allela OQ, Pecho RD, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implemen Mol Cancer. 2023;22(1):169.
  36. Gao S, Yang X, Xu J, Qiu N, Zhai G. Nanotechnology for boosting cancer immunotherapy and remodeling tumor microenvironment: the horizons in cancer treatment. ACS Nano. 2021;15(8):12567–
  37. Zhu C, Ji Z, Ma J, Ding Z, Shen J, Wang Q. Recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems for cancer treatment. Pharmaceutics. 2021;13(7):940.
  38. Alrushaid N, Khan FA, Al-Suhaimi EA, Elaissari A. Nanotechnology in cancer diagnosis and treatment. Pharmaceutics. 2023;15(3):1025.
  39. Tang Q, Yu B, Gao L, Cong H, Song N, Lu C. Stimuli responsive nanoparticles for controlled anti-cancer drug release. Curr Med Chem. 2018;25(16):1837–
  40. Hosseinzadeh A, Zamani A, Johari HG, Vaez A, Golchin A, Tayebi L, Vafa E, Abbasi M, Amani AM, Chelliapan S, Kamyab H. Moving beyond nanotechnology to uncover a glimmer of hope in diabetes medicine: effective nanoparticle‐based therapeutic strategies for the management and treatment of diabetic foot ulcers. Cell Biochem Funct. 2023;41(5):517–
  41. Shoaib A, Darraj A, Khan ME, Azmi L, Alalwan A, Alamri O, et al. A nanotechnology-based approach to biosensor application in current diabetes management practices. Nanomaterials. 2023;13(5):867.
  42. Vargas J, García L, Baena Y. Nanotechnology and herbal products: advances and perspectives in the treatment of diabetes and some of its complications. J Appl Pharm Sci. 2023;13(12):001–
  43. DiSanto RM, Subramanian V, Gu Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(4):548–
  44. Gupta R. Diabetes treatment by nanotechnology. J Biotechnol Biomater. 2017;7(3):268.
  45. Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, et al. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release. 2022;350:26–
  46. Moghadam NB, Avatefi M, Karimi M, Mahmoudifard M. Graphene family in cancer therapy: recent progress in cancer gene/drug delivery applications. J Mater Chem B. 2023;11(12):2568–
  47. Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9(12):9243–
  48. Oliveira AM, Machado M, Silva GA, Bitoque DB, Tavares Ferreira J, Pinto LA, et al. Graphene oxide thin films with drug delivery function. Nanomaterials. 2022;12(7):1149.
  49. Idumah CI. Design, development, and drug delivery applications of graphene polymeric nanocomposites and bionanocomposites. Emerg Mater. 2023;6(3):777–
  50. Mohammad-Jafari K, Naghib SM. 3D printing of microfluidic-assisted liposomes production for drug delivery and nanobiomedicine: a review. Curr Med Chem. 2024.
  51. Yang R, Sun H. A Co-Flow Millifluidic Device for Nanoparticle Synthesis. In: Heat Transfer Summer Conference: American Society of Mechanical Engineers; 2023. V001T09A003.
  52. Sundaram S, Skouras M, Kim DS, van den Heuvel L, Matusik W. Topology optimization and 3D printing of multimaterial magnetic actuators and displays. Sci Adv. 2019;5(7):eaaw1160.
  53. Wang K, Pan W, Liu Z, Wallin TJ, van Dover G, Li S, et al. 3D printing of viscoelastic suspensions via digital light synthesis for tough nanoparticle–elastomer composites. Adv Mater. 2020;32(25):2001646.
  54. Feng W, Wen Y, Sun S, Li P, Shi S. Reconfigurable all‐oil microfluidic devices by 3D Printing. Small. 2024;20(40):
  55. Gupta R. Diabetes treatment by nanotechnology. J Biotechnol Biomater. 2017;7(3):268.
  56. Vargas J, García L, Baena Y. Nanotechnology and herbal products: advances and perspectives in the treatment of diabetes and some of its complications. J Appl Pharm Sci. 2023;13(12):001–
  57. Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, et al. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release. 2022;350:26–
  58. Moghadam NB, Avatefi M, Karimi M, Mahmoudifard M. Graphene family in cancer therapy: recent progress in cancer gene/drug delivery applications. J Mater Chem B. 2023;11(12):2568–
  59. Hosseinzadeh A, Zamani A, Johari HG, Vaez A, Golchin A, Tayebi L, et al. Moving beyond nanotechnology to uncover a glimmer of hope in diabetes medicine: effective nanoparticle‐based therapeutic strategies for the management and treatment of diabetic foot ulcers. Cell Biochem Funct. 2023;41(5):517–
  60. Vargas J, García L, Baena Y. Nanotechnology and herbal products: advances and perspectives in the treatment of diabetes and some of its complications. J Appl Pharm Sci. 2023;13(12):001–14.Gupta R. Diabetes treatment by nanotechnology. J Biotechnol Biomater. 2017;7(3):268.
  61. Shoaib A, Darraj A, Khan ME, Azmi L, Alalwan A, Alamri O, et al.
  62. Hosseinzadeh A, Zamani A, Johari HG, Vaez A, Golchin A, Tayebi L, et al. Moving beyond nanotechnology to uncover a glimmer of hope in diabetes medicine: effective nanoparticle‐based therapeutic strategies for the management and treatment of diabetic foot ulcers. Cell Biochem Funct. 2023;41(5):517–
  63. DiSanto RM, Subramanian V, Gu Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(4):548–64.
  64. Musazzi UM, Franzè S, Condorelli F, Minghetti P, Caliceti P. Feeding next‐generation nanomedicines to Europe: regulatory and quality challenges. Adv Healthc Mater. 2023;12(30):2301956.
  65. Mühlebach S. Regulatory challenges of nanomedicines and their follow-on versions: a generic or similar approach? Adv Drug Deliv Rev. 2018;131:122–
  66. Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360.
  67. Mühlebach S, Borchard G, Yildiz S. Regulatory challenges and approaches to characterize nanomedicines and their follow-on similars. Nanomedicine. 2015;10(4):659–
  68. Bhattacharya S, Alkharfy KM, Janardhanan R, Mukhopadhyay D. Nanomedicine: pharmacological perspectives. Nanotechnol Rev. 2012;1(3):235–
  69. Bainbridge WS. Social and ethical implications of nanotechnology. In: Springer Handbook of Nanotechnology; 2004. p.
  70. Patil AS, Parishwad GV, Kale SK, Husainy AS. Modern ethical and societal implications of nanotechnology. EasyChair; 2020.
  71. Khan AS, Agajanian A. Incorporating social and ethical implications of nanotechnology in the engineering and technology curricula. In: 2011 ASEE Annual Conference & Exposition; 2011. p. 22–
  72. Schummer J. ‘Societal and ethical implications of nanotechnology’: Meanings, interest groups, and social dynamics. In: Nanotechnology challenges: implications for philosophy, ethics, and society; 2006. p. 413–
  73. Khan A. Ethical and social implications of nanotechnology. QScience Proc. 2014;2015(4):57.
  74. Luo M, Feng Y, Wang T, Guan J. Micro‐/nanorobots at work in active drug delivery. Adv Funct Mater. 2018;28(25):1706100.
  75. Zhang D, Liu S, Guan J, Mou F. “Motile-targeting” drug delivery platforms based on micro/nanorobots for tumor therapy. Front Bioeng Biotechnol. 2022;10:1002171.
  76. Kim K, Guo J, Liang Z, Fan D. Artificial micro/nanomachines for bioapplications: biochemical delivery and diagnostic sensing. Adv Funct Mater. 2018;28(25):1705867.
  77. Musazzi UM, Franzè S, Condorelli F, Minghetti P, Caliceti P. Feeding next‐generation nanomedicines to Europe: regulatory and quality challenges. Adv Healthc Mater. 2023;12(30):2301956.
  78. Khan A. Ethical and social implications of nanotechnology. QScience Proc. 2014 Nov 8;2015(4):57.
  79. Beech D. Guest editorial: Bridging the gap between laboratory research and clinical practice—dentists doing dental materials research. J Dent Res. 1992;71(5):1266–.
  80. Di Rienzo G. Situating the KTA gap in clinical research: foregrounding a discontinuity in practices. Front Psychol. 2023;13:1058845.
  81. Khan A. Ethical and social implications of nanotechnology. QScience Proc. 2014 Nov 8;2015(4):57.
  82. Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci. 2020;8(17):4653–
  83. Musazzi UM, Franzè S, Condorelli F, Minghetti P, Caliceti P. Feeding next‐generation nanomedicines to Europe: regulatory and quality challenges. Adv Healthc Mater. 2023 Dec;12(30):2301956.
  84. Millagaha Gedara NI, Xu X, DeLong R, Aryal S, Jaberi-Douraki M. Global trends in cancer nanotechnology: a qualitative scientific mapping using content-based and bibliometric features for machine learning text classification. Cancers. 2021;13(17):4417.
  85. Sadykova A. Today’s key global trends in engineering education: preparing freshmen for nanotechnology. In: 2015 International Conference on Interactive Collaborative Learning (ICL); 2015. p. 508– IEEE.
  86. Zhu Y, Yao Y, Kuang R, Chen Z, Du Z, Qu S. Global research trends of nanotechnology for pain management. Front Bioeng Biotechnol. 2023;11:1249667.
  87. Idamokoro EM, Hosu YS. Global research trends on the use of nanotechnology to boost meat production: a scientometric analysis. Front Res Metr Anal. 2022;6:793853.
  88. Khan A. Ethical and social implications of nanotechnology. QScience Proc. 2014 Nov 8;2015(4):57.
  89. Bennett‐Woods D. Anticipating the impact of nanoscience and nanotechnology in healthcare. In: Nanoscale: Issues and Perspectives for the Nano Century; 2007. p. 295–
  90. Khan A. Ethical and social implications of nanotechnology. QScience Proc. 2014 Nov 8;2015(4):57.
  91. Khan AS, Agajanian A. Incorporating Social and Ethical Implications of Nanotechnology in the Engineering and Technology Curricula. In2011 ASEE Annual Conference & Exposition 2011 Jun 26 (pp. 22-850).
  92. Millagaha Gedara NI, Xu X, DeLong R, Aryal S, Jaberi-Douraki M. Global trends in cancer nanotechnology: a qualitative scientific mapping using content-based and bibliometric features for machine learning text classification. Cancers. 2021;13(17):4417.
  93. Musazzi UM, Franzè S, Condorelli F, Minghetti P, Caliceti P. Feeding next‐generation nanomedicines to Europe: regulatory and quality challenges. Adv Healthc Mater. 2023 Dec;12(30):2301956.
  94. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–
  95. Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci. 2020;8(17):4653–
  96. Yang B, Shi J. Developing new cancer nanomedicines by repurposing old drugs. Angew Chem Int Ed. 2020;59(49):21829–
  97. Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG, Searson PC. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release. 2014;187:133–
  98. Sun D, Zhou S, Gao W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano. 2020;14(10):12281–
  99. Kobayashi H, Turkbey B, Watanabe R, Choyke PL. Cancer drug delivery: considerations in the rational design of nanosized bioconjugates. Bioconjug Chem. 2014;25(12):2093–
  100. Sahakyan N, Haddad A, Richardson S, Forcha-Etieundem V, Christopher L, Alharbi H, Campbell R. Personalized nanoparticles for cancer therapy: a call for greater precision. Anti-Cancer Agents Med Chem. 2017;17(8):1033–
  101. Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomaterials science. 2020;8(17):4653-64.
  102. Mi P, Cabral H, Kataoka K. Ligand‐installed nanocarriers toward precision therapy. Adv Mater. 2020;32(13):1902604.
  103. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016 Oct;33:2373-87.
  104. Lorscheider M, Gaudin A, Nakhlé J, Veiman KL, Richard J, Chassaing C. Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Ther Deliv. 2021;12(1):55–
  105. Dai L, Liu J, Luo Z, Li M, Cai K. Tumor therapy: targeted drug delivery systems. J Mater Chem B. 2016;4(42):6758–
  106. Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomater Sci. 2020;8(17):4653-64.
  107. Musazzi UM, Franzè S, Condorelli F, Minghetti P, Caliceti P. Feeding next‐generation nanomedicines to Europe: regulatory and quality challenges. Adv Healthc Mater. 2023 Dec;12(30):2301956.
  108. Sahakyan N, Haddad A, Richardson S, Forcha-Etieundem V, Christopher L, Alharbi H, Campbell R. Personalized nanoparticles for cancer therapy: a call for greater precision. Anti-Cancer Agents Med Chem. 2017 Jul 1;17(8):1033-9.

 


Regular Issue Subscription Review Article
Volume 15
Issue 01
Received 23/12/2024
Accepted 30/12/2024
Published 04/01/2025


Loading citations...