Unravelling the Influence of Dimensions on the Thermoelectric Properties of AHEGNR

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2024 | Volume :14 | Issue : 03 | Page : –
By
vector

Ranju Bala,

  1. Associate Professor, Department of Physics, DBNP College Of Arts & Com, SSGG Science, Lonavala, Pune, India

Abstract document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_108880’);});Edit Abstract & Keyword

The thermoelectric properties of hydrogenated edge semiconductor graphene nanoribbons (GNRs) have thus far been explored in detail. The effects of varying the sizes of zigzag hydrogenated edge graphene nanoribbons (ZHEGNRs) and armchair hydrogenated edge graphene nanoribbons (AHEGNRs) in terms of their properties were then investigated. This was achieved via the control of the graphene nanoribbon dimensions i.e., width and length by utilizing density functional theory in Quantum Espresso, augmented by the BoltzTraP code. Assuming a constant relaxation time, the Seebeck coefficient, electrical conductivity, and electronic thermal conductivity were calculated using Boltzmann transport theory to determine the coefficient of performance..Our findings indicate that transport properties are sensitive to sample dimensions, showing a more pronounced trend in ZHEGNRs than AHEGNRs. When the graphene sample becomes larger, there will be a larger number of low-frequency acoustic phonons that can be excited, which helps thermal conduction and shows length dependence in thermal conductivity.  The number of edge-localized phonon modes is constant at lower widths of GNRs but increases at wider widths. Hence while the number of edge-localized phonon modes does not significantly affect the thermal conductivity with every width increase, the variation itself is too small to be registered.

Keywords: Graphene, Thermo-electric Properties, Transport properties, nanoribbon , size dependent properties.

[This article belongs to Journal of Nanoscience, NanoEngineering & Applications (jonsnea)]

How to cite this article:
Ranju Bala. Unravelling the Influence of Dimensions on the Thermoelectric Properties of AHEGNR. Journal of Nanoscience, NanoEngineering & Applications. 2024; 14(03):-.
How to cite this URL:
Ranju Bala. Unravelling the Influence of Dimensions on the Thermoelectric Properties of AHEGNR. Journal of Nanoscience, NanoEngineering & Applications. 2024; 14(03):-. Available from: https://journals.stmjournals.com/jonsnea/article=2024/view=0

Full Text PDF

References
document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_108880’);});Edit

  1. G. K. H. Madsen and D. J. Singh, “BoltzTraP: A Code for Calculating Band-Structure Dependent Quantities,” Comput. Phys. Commun., 175, 67–71 (2006).
  2.  F. L. Shyu, Ming Fa Lin, C. P. Chang, R. B. Chen, J. S. Shyu, Y. C. Wang, C. H. Liao, “Tight-Binding Band Structures of Nanographite Multiribbons,” J. Phys. Soc. Jpn., 70, No. 11, pp. 3348-3355 (2001).
  3.  J. Chen, G. Zhang, B. Li, “Substrate Coupling Suppresses Size Dependence of Thermal Conductivity in Supported Graphene,” Nanoscale, 5 (2), pp. 532-536 (2013).
  4.  Neeraj K. Jaiswal, Goran Kovacevic, Branko Pivac, “Reconstructed Graphene Nanoribbon as a Sensor for Nitrogen-Based Molecules,” Appl. Surf. Sci., 357, pp. 55-59 (2015).
  5.  Katsunori Wakabayashi, “Electronic Transport Properties of Nanographite Ribbon Junctions,” Phys. Rev. B, 64, 125428 (2001).
  6.  Hidefumi Hiura, “Tailoring Graphite Layers by Scanning Tunneling Microscopy,” Appl. Surf. Sci., 222, Issues 1–4, pp. 374-381 (2004).
  7.  S. Krompiewski, G. Cuniberti, “In-Plane Edge Magnetism in Graphene-Like Nanoribbons,” Acta Phys. Pol., A, 131 (2017).
  8.  F. Schwierz, “Graphene Transistors,” Nat. Nanotechnol., 5, pp. 487-496 (2010).
  9.  Blanca Biel, X. Blase, François Triozon, Stephan Roche, “Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons,” Phys. Rev. Lett., 102, Article 096803 (2009).
  10.  Teong Hansen, Kai-Tak Lam, Sharjeel Bin Khalid, Gengchiau Liang, “Shape Effects in Graphene Nanoribbon Resonant Tunneling Diodes: A Computational Study,” J. Appl. Phys., 105, Article 084317 (2009).
  11.  V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, “Graphene-Based Materials: Past, Present, and Future,” Prog. Mater. Sci., 56 (8), pp. 1178-1271 (2011).
  12.  Ming-Fa Lin, Ming-Yang Chen, Feng-Lin Shyu, “Electronic Collective Excitations in AB-Stacked Nanographite Ribbons,” J. Phys. Soc. Jpn., 70, No. 9, pp. 2513-2516 (2001).
  13.  J. Chen, L. Xu, W. Li, X. Gou, “α–Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications,” Adv. Mater., 17 (5), pp. 582-586 (2005).
  14.  Veronica Barone, Oded Hod, Gustavo E. Scuseria, “Electronic Structure and Stability of Semiconducting GNRs,” Nano Lett., 6, No. 12, pp. 2748-2754 (2006).
  15.  G. J. Snyder and E. S. Toberer, “Complex Thermoelectric Materials,” Materials for Sustainable Energy, World Scientific Nature Publishing Group, pp. 101-110 (2010).
  16.  C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang, X. Zhang, M. Sindoro, “Recent Advances in Ultrafine Two-Dimensional Nanomaterials,” Chem. Rev., 117 (9), pp. 6225-6331 (2017).
  17.  R. Chmielowski, D. Pere, C. Bera, I. Opahle, W. Xie, S. Jacob, F. Capet, P. Roussel, A. Weidenkaff, G. K. H. Madsen, G. Dennler, “Theoretical and Experimental Investigations of the Thermoelectric Properties of Bi2S3,” J. Appl. Phys., 117, 125103 (2015).
  18.  Ming-Fa Lin, Feng-Lin Shyu, “Optical Properties of Nanographite Ribbons,” J. Phys. Soc. Jpn., 69, No. 11, pp. 3529-3532 (2000).
  19.  Georg K.H. Madsen, David J. Singh, “BoltzTraP: A Code for Calculating Band-Structure Dependent Quantities,” Comput. Phys. Commun., 175, pp. 67-71 (2006).
  20.  P. Sun, K. Wang, H. Zhu, “Recent Developments in Graphene-Based Membranes: Structure, Mass-Transport Mechanism, and Potential Applications,” Adv. Mater., 28 (12), pp. 2287-2310 (2016).

Regular Issue Subscription Original Research
Volume 14
Issue 03
Received 15/10/2024
Accepted 19/10/2024
Published 23/10/2024

function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}