Saccharomyces Cerevisiae and Pichia Pastoris Optimize NH4NO3 by 50 % in Solanum Lycopersicum Preventing N2O Release.

Year : 2024 | Volume :02 | Issue : 01 | Page : 7-13
By

Prof. Juan Manuel Sánchez Yáñez

  1. Research Professor Environmental Microbiology Laboratory, Chemical Biological Research Institute, Ed B3, University City, Universidad of Michoacana de San Nicolás de Hidalgo. Morelia, Mich México

Abstract

In agriculture, the unregulated application of NH4NO3 for healthy growth of Solanum lycopersicum is associated in the soil with the denitrification of free NO3- (nitrate), with an increase in N2O, a greenhouse gas, that contributes to global warming, loss of soil fertility. An ecological option to avoid denitrification that releases N2O as other environmental problems is to inoculate S. lycopersicum seeds with endophytic yeasts that promote plant growth, such as Saccharomyces cerevisiae and Pichia pastoris, that increase the uptake of reduced doses of NH4NO3. In this sense, the purpose of this work was to analyze the response of S. lycopersicum to P. pastoris and S. cerevisiae at a dose of 50% NH4NO3. The experiment in a greenhouse, was made in agricultural soil, with a low level of nitrogen available, for the plant. Endophytic yeast were isolated flowers, from wild plants with beneficial activity, for domestic plants were used. To analyze the response of S. lycopersicum to P. pastoris and S. cerevisiae, a randomized trial was used: S. lycopersicum uninoculated with the yeasts:
a) irrigated with water only, b) fed with 100% NH4NO3; 3 treatments of S. lycopersicum at 50% NH4NO3 inoculated with: c) S. cerevisiae, d) P. pastoris, e) S. cerevisiae + P. pastoris, and 6 repetitions: The following were considered as response variables: the germination of S. lycopersicum, at the seedling level: plant height (PH) and root length (LR), as well as aerial and radical fresh weight (AFW/RFW) and dry weight: aerial and radical (ADW/RDW). Numerical results were validated with ANOVA/Tukey P<0.05% The main results showed, a better positive response of S. lycoperiscum to P. pastoris at 50% NH4NO3; than with S. cerevisiae or the combination of both. Due to the ability of endophytic yeasts, to invade at the beginning of the formation of the root system, in germination, then in root development, that improved phenology and biomass at the seedling level. This positive effect of this yeasts on S. lycopersicum supports, that they converted organic compounds, from the roots into phytohormones, that maximally increased the uptake of NH4NO3 to 50%, which in the soil, prevents the generation of N2O, the loss of fertility and contamination of surface or underground water, due to excess free nitrogen fertilizer.

Keywords: Soil, Nitrogen Fertilizer, Endophytic Yeasts, Plant Growth Promoting Microorganisms, Global Warming

[This article belongs to International Journal of Pollution: Prevention & Control(ijppc)]

How to cite this article: Prof. Juan Manuel Sánchez Yáñez. Saccharomyces Cerevisiae and Pichia Pastoris Optimize NH4NO3 by 50 % in Solanum Lycopersicum Preventing N2O Release.. International Journal of Pollution: Prevention & Control. 2024; 02(01):7-13.
How to cite this URL: Prof. Juan Manuel Sánchez Yáñez. Saccharomyces Cerevisiae and Pichia Pastoris Optimize NH4NO3 by 50 % in Solanum Lycopersicum Preventing N2O Release.. International Journal of Pollution: Prevention & Control. 2024; 02(01):7-13. Available from: https://journals.stmjournals.com/ijppc/article=2024/view=137031





Browse Figures

References

  1. Malhi, G. S., Kaur, M., & Kaushik, P. 2021. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318.
  2. Panchasara, H., Samrat, N. H., & Islam, N. 2021. Greenhouse gas emissions trends and mitigation measures in Australian agriculture sector-A review. Agriculture, 11(2), 85.
  3. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. 2019. Soil and the intensification of agriculture for global food security. Environment international, 132, 105078.
  4. Hernández-Terrón, J. J., Gutiérrez-Rodríguez, F., Serrato-Cuevas, R., González-Huerta, A., & García-Rodríguez, E. 2021. Manejo nutricional integrado: herramienta clave para la agricultura sostenible. Revista mexicana de ciencias agrícolas, 12(5), 885-897.
  5. Sarabia M, Cazares S, González-Rodríguez A, Mora F, Carreón-Abud Y, Larsen J. 2018. Plant growth promotion traits of rhizosphere yeasts and their response to soil characteristics and crop cycle in maize agroecosystems. 6:67-73. DOI: 10.1016/j.rhisph.2018.04.002
  6. Wu Y, Wu J, Ma Y, Lian Y, Sun H, Xie D, et al. 2019. Dynamic changes in soil chemical properties and microbial community structure in response to different nitrogen fertilizers in an acidified celery Soil Ecol Lett. (3-4):105-13. DOI: 10.1007/s42832-019-0012-z
  7. Amprayn KO, Rose MT, Kecskés M, Pereg L, Nguyen HT, Kennedy IR. 2012. Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice Appl Soil Ecol. 61:295-9.

DOI: 10.1016/j.apsoil.2011.11.009

  1. Salvador, A., del Castillo, I., Verdeguer, M., Nacher, J., & Muñoz, M. 2022. Microorganismos y bioestimulación: Cuando la agricultura se pone en manos de la biotecnología. Olint: Revista de plantaciones superintensivas de olivo, (38), 92-99.
  2. Türkanoğlu Özçelik, A., Yılmaz, S., & Inan, M. 2019. Pichia pastorisRecombinant Protein Production in Yeast, 97-112.
  3. George TK, Subaida Beevi S, Asok AK, Shaikmoideen JM. 2021. Lant growth promoting endophytic yeast Geotrichum candidum (jx 477426) from roots of Bruguiera cylindrica. J Microbiol Biotechnol Food Sci. 267- DOI: 10.15414/jmbfs.2019.9.2.267-272
  4. Mukherjee, A., Verma, J. P., Gaurav, A. K., Chouhan, G. K., Patel, J. S., & Hesham, A. E. L. 2020. Yeast a potential bio-agent: future for plant growth and postharvest disease management for sustainable agriculture. Applied microbiology and biotechnology, 104, 1497-1510.
  5. Poveda, J., Eugui, D., Abril-Urías, P., & Velasco, P. 2021. Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Symbiosis, 85(1), 1-19.
  6. Ling, L., Tu, Y., Ma, W., Feng, S., Yang, C., Zhao, Y, and Zhang, J. 2020. Un recurso potencialmente importante: las levaduras endófitas. Revista Mundial de Microbiología y Biotecnología, 36, 1-7.
  7. Fernández-San Millan, A., Farran, I., Larraya, L., Ancin, M., Arregui, L. M., & Veramendi, J. 2020. Plant growth-promoting traits of yeasts isolated from Spanish vineyards: Benefits for seedling development. Microbiological research, 237, 126480.
  8. Nardi P, Neri U, Di Matteo G, Trinchera A, Napoli R, Farina R, et al. Nitrogen release from slow-release fertilizers in soils with different microbial activities. Pedosphere. 28(2):332-40.
  9. Zhou J, Diao X, Wang T, et al 2018. Phylogenetics diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and mucronata in the South China Sea. PLoS One 13: e0197359. http://dx.doi.org/10.1371/journal.pone.0197359

Regular Issue Subscription Original Research
Volume 02
Issue 01
Received February 5, 2024
Accepted March 18, 2024
Published March 30, 2024