Advancements in O-Glycosylation Techniques with Diverse Donor Molecules

Year : 2025 | Volume : 03 | Issue : 01 | Page : 7-25
    By

    Samta Singh,

  • Amit Dey,

  • Avinash Tiwari,

  1. Research Scholar, Dr. RML Avadh University, Ayodhya, Uttar Pradesh, India
  2. Research Officer-1, Krish Biotech Research Private Limited, Kalyani, West Bengel, India
  3. Assistant Professor, Dr. RML Avadh University, Ayodhya, Uttar Pradesh, India

Abstract

Since the early stages of carbohydrate chemistry, numerous researchers have employed alkynyl glycosyl donors as key reagents in glycosylation reactions. These donors have played a crucial role in facilitating the synthesis of glycosidic bonds, an essential aspect of carbohydrate-based compounds. Over time, various modifications and improvements have been introduced by different research groups to enhance the efficiency, selectivity, and sustainability of glycosylation processes. A major focus has been on designing glycosyl donors that align with the principles of green chemistry, reducing the reliance on hazardous reagents and improving reaction efficiency. The continuous evolution of alkynyl glycosyl donors has led to innovative approaches that minimize waste, enhance atom economy, and utilize environmentally benign catalysts and solvents. Researchers have explored diverse structural modifications to optimize these donors, improving their reactivity and stability under different reaction conditions. Additionally, advancements in protecting group strategies and activation methodologies have contributed to making these glycosylation reactions more practical and widely applicable in carbohydrate synthesis. Over the past decade, significant progress has been made in this field, with numerous studies reporting novel alkynyl glycosyl donors capable of achieving high yields and excellent stereoselectivity. This review provides an in-depth analysis of the recent developments in alkynyl glycosyl donor chemistry, focusing on their structural diversity, reaction mechanisms, and applications in sustainable glycosylation strategies. By highlighting these advancements, this work aims to provide valuable insights into the future directions and potential applications of these glycosyl donors in carbohydrate synthesis.

Keywords: Glycosyl donor, glycosylation, glycosyl acceptor, glycosides, nucleophilic species

[This article belongs to International Journal of Cheminformatics ]

How to cite this article:
Samta Singh, Amit Dey, Avinash Tiwari. Advancements in O-Glycosylation Techniques with Diverse Donor Molecules. International Journal of Cheminformatics. 2025; 03(01):7-25.
How to cite this URL:
Samta Singh, Amit Dey, Avinash Tiwari. Advancements in O-Glycosylation Techniques with Diverse Donor Molecules. International Journal of Cheminformatics. 2025; 03(01):7-25. Available from: https://journals.stmjournals.com/ijci/article=2025/view=207989



References

  1. Ramesh HP, Tharanathan RN. Carbohydrates, 2003;23(2):149–73. doi: 10.1080/713609312. PMID: 12889744.
  2. Wilkinson, Hayden and Saldova, Radka, Journal of Proteome Research,19, 10,3890–3905, 2020, 10.1021/acs.jproteome.0c00435
  3. Magalhães A, Duarte HO, Reis CA.Mol Aspects Med. 2021 Jun;79:100964. doi: 10.1016/j.mam.2021.100964. Epub 2021 Mar 26. PMID: 33775405.
  4. Thompson N, Wakarchuk ,Biosci Rep. 2022 Oct 28;42(10):BSR20220094. doi: 10.1042/BSR20220094. PMID: 36214107; PMCID: PMC9620488.
  5. Mukherjee MM, Ghosh R, Hanover JA. Front MolBiosci. 2022 Jun 14;9:896187. doi: 10.3389/fmolb.2022.896187. PMID: 35775080; PMCID: PMC9237389.
  6. Das R, Mukhopadhyay B. Chemical O-Glycosylations, 2016 Aug 17;5(5):401–433. doi: 10.1002/open.201600043. PMID: 27777833; PMCID: PMC5062006
  7. Zhang, Qingju& Sun, Jiansong& Zhu, Yugen& Zhang, Fuyi& Yu, Biao. (2011). AngewandteChemie(International ed. In English). 50. 4933–6. 10.1002/anie.201100514.
  8. Li, Y., Yang, Y., & Yu, B. (2008).  Tetrahedron Letters, 49, 3604–3608.
  9. Li, Yao and Yu, Biao,”Chem. Commun.,2010,46,33,6060–6062
  10. Kayastha AK, Hotha S. 2012 Jul 21;48(57):7161–3. doi: 10.1039/c2cc32649c. Epub 2012 Jun 12. PMID: 22692468.
  11. Abhijeet K. Kayastha and SrinivasHotha ,Beilstein Journal of Organic Chemistry,2013,9,2147–2155,1860–5397
  12. Tang, Yu and Li, Jiakun and Zhu,Yugen and Li, Yao and Yu, Biao,Journal of the American Chemical Society, 135,49,18396–18405,2013,doi {10.1021/ja4064316
  13. Yu, J., Sun, J., Niu, Y., Li, R., Liao, J., Zhang, F., & Yu, B. (2013).Chemical Science, 4(10), 3899–3905
  14. Demchenko, A. V. (2008). Handbook of chemical glycosylation:Wiley-VCH. https://doi.org/10.1002/9783527621644
  15. Adhikari, S.B., Baryal, K.N., Zhu, D., Li, X., & Zhu, J. (2013).  ACS Catalysis, 3, 57–60.
  16. Chen, Xiaoping and Shen, Dacheng and Wang, Qiaoling and Yang, You and Yu, Biao, Chem. Commun., 2015,73,13957–13960,The Royal Society of Chemistry,10.1039/C5CC05651A
  17. Koppolu, S.R., Niddana, R., &Balamurugan, R. (2015). Organic &biomolecular chemistry, 13, 18, 5094–7.
  18. VenkateswaraRao B, Manmode S, Hotha S. Carbohydr Res. 2015 Nov 19;417:103–8. doi: 10.1016/j.carres.2015.09.009. Epub 2015 Sep 24. PMID: 26454167.
  19. V. Rao, S. Manmode, S. Hotha, Propargyl 1,2-orthoesters for a catalytic and stereoselective synthesis of pyrimidine nucleosides, J. Org. Chem. (2015).
  20. Zhong, Y., &Shing, T.K. (1997). The Journal of organic chemistry, 62 8, 2622–2624.
  21. Honda, M., Morita, H., &Nagakura, I. (1997). Journal of Organic Chemistry, 62, 8932–8936.
  22. Mukherjee, D., Sarkar, S.K., Chowdhury, U.S., &Taneja, S.C. (2007). Tetrahedron Letters, 48, 663–667.
  23. Kumar, M. A. Aga, A. Rouf, B. A. Shah, S. C. Taneja, J. Org. Chem. 2011, 76, 3506–3510
  24. Kumar, B.S., Aga, M.A., Mukherjee, D., Chimni, S.S., &Taneja, S.C. (2009). Letters, 50, 6236–6240
  25. Luo, A. Tripathi, M. M. L. Zulueta, S. Hung, Carbohydrate Research 352 (2012) 197–201.
  26. Tai, C.-A.; Kulkarni, S. S.; Hung, S.-C. J. Org. Chem. 2003, 68, 8719–8722.
  27. D. Premathilake, A. V. Demchenko, Beilstein J. Org. Chem. 2012, 8, 597–605.
  28. Fraser-Reid, B.; Udodong, U. E.; Wu, Z.; Ottosson, H.; Merritt, J. R.; Rao, C. S.; Roberts, C.; Madsen, R. Synlett 1992, 927–942.
  29. Lönn, H. J. Carbohydr. Chem. 1987, 6, 301–306.
  30. Sheng, S.; Hu, M.; Wu, D.; Cai, M.; Huang, X. Lett. Org. Chem. 2009, 6, 345–348.
  31. Scholl, T. Licisyn, C. Cummings, K. Hughes, D. Johnson, W. Boyko, R. Giuliano, Carbohydrate Research 356 (2012) 288–294.
  32. (a) Kulinkovich, O. G. Chem. Rev. 2003, 103, 2597–2632. (b) Jiao, J.; Nguyen, L. X.; Patterson, D. R.; Flowers, R. A., II Org. Lett. 2007, 9, 1323– 1326.
  33. Schmidt, R. R.; Jung, K.-H. In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker, 1997; pp 283–312.
  34. (a) Doyle, M. P.; Bagheri, B.; Wandless, T. J.; Harn, N. K.; Brinker, D. A.; Eagle, C. T.; Loh, K.-L. J. Am. Chem. Soc. 1990, 112, 1906–1912. (b) Schumacher, R.; ReissigSynlett 1996, 1121–1122.
  35. (a) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321–347. (b) Cousins, G. S.; Hoberg, J. O. Chem. Soc. Rev. 2000, 29, 165–174.
  36. Codée, J. D. C.; Litjens, R. E. J. N.; van den Bos, L. J.; Overkleeft, H. S.; van der Marel, G. A. Chem. Soc. 2005, 34, 769.
  37. Peng, P.; Xiong, D.-C.; Ye, X.-S. Carbohydr.Res. 2014, 384, 1.
  38. Xiong, A. Yang, Y. Yu, X. Ye, Tetrahedron Letters 56 (2015) 211–214.
  39. Shu, X. Xiao, Y. Zhao, Y. Xu, W. Yao, J. Tao, H. Wang, G. Yao, Z. Lu, J. Zeng, Q. Wan, Angew. Chem. 2015, 127, 14640 –14644.
  40. V. Demchenko, N. N. Malysheva, C. De Meo, Org. Lett. 2003, 5, 455.
  41. V. Demchenko, P. Pornsuriyasak, C. De Meo, N. N. Malysheva, Angew. Chem. 2004, 116, 3131; Angew.Chem. Int. Ed. 2004, 43, 3069.
  42. (a) Y. Wang, X. S. Ye, L. H. Zhang, Org. Biomol. Chem. 2007, 5, 2189. (b) P. Pornsuriyasak, A. V. Demchenko, Tetrahedron: Asymmetry 2005, 16, 433. (c) A. R. Parameswar, A. V. Demchenko in Progress in the Synthesis of Complex Carbohydrate Chains of Plant and Microbial Polysaccharides (Ed.: N. E. Nifantiev), Transworld Research Network, Kerala, 2009, pp. 463.
  43. (a) P. H. Seeberger, W. C. Haase, Chem. Rev. 2000, 100, 4349. (b) R. R. Schmidt, S. Jonke, K. Liu in ACS Symp. Ser. (Frontiers in Modern Carbohydrate Chemistry), Vol. 960 (Ed.: A. V. Demchenko), Oxford University Press, 2007, p. 209. (c) M. C. Parlato, M. N. Kamat, H. Wang, K. J. Stine, A. V. Demchenko, J. Org. Chem. 2008, 73, 1716.
  44. (a) B. Fraser-Reid, U. E. Udodong, Z. F. Wu, H. Ottosson, J. R. Merritt, C. S. Rao, C. Roberts, R. Madsen, Synlett 1992, 927. (b) M. N. Kamat, A. V. Demchenko, Org. Lett. 2005, 7, 3215. (c) A. F. G. Bongat, M. N. Kamat, A. V. Demchenko, J. Org. Chem. 2007, 72, 1480.
  45. (a) O. Kanie, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1994, 116, 12073. (b) P. Pornsuriyasak, A. V. Demchenko, Chem. Eur. J. 2006, 12, 6630. (c) S. R. Vidadala, S. A. Thadke, S. Hotha, J. Org. Chem. 2009, 74, 9233. (d) S. Kaeothip, P. Pornsuriyasak, N. P. Rath, A. V. Demchenko, Org. Lett. 2009, 11, 799
  46. (a) V. Ferrieres, S. Blanchard, D. Fischer, D. Plusquellec, Bioorg. Med. Chem. 2002, 12, 3515. (b) R. Euzen, V. Ferrieres, D. Plusquellec, J. Org. Chem. 2005, 70, 847.
  47. J. Hasty, M. A. Kleine, A. V. Demchenko, Angew. Chem. 2011, 123, 4283 –4287.
  48. Manabe, K. Ishii and Y. Ito, J. Org. Chem., 2007, 72, 6107.
  49. (a) T. Buskas and P. Konradsson, J. Carbohydr. , 2000, 19, 25.(b) P. Wang, H. Lee, M. Fukuda and P. H. Seeberger, Chem. Commun., 2007, 1963. (c) K. Goto and M. Mizuno, Tetrahedron Lett., 2010, 51, 6539.
  50. Noguchi, M. Nakamura, A. Ohno, T. Tanaka, A. Kobayashi, M. Ishihara, M. Fujita, A. Tsuchida, M. Mizunoc, S. Shoda, Chem. Commun., 2012, 48, 5560–5562.
  51. S. Nigudkar, A. R. Parameswar, P. Pornsuriyasak, K. J. Stinea, A. V. Demchenko, Org. Biomol. Chem., 2013, 11, 4068–4076.
  52. S. Nigudkar, K. J. Stine, A. V. Demchenko, J. Am. Chem. Soc. 2014, 136, 921−923.
  53. (a) Zhu, J.; Zhang, W.; Hu, J. J. Org. Chem. 2010, 75, 5505−5512. (b) Torres, J. C.; Garden, S. J.; Pinto, A. C. Tetrahedron 1999, 55, 1881−1892.
  54. C. Ranade, A. V. Demchenko, Carbohydr. Res. (2014), http://dx.doi.org/10.1016/j.carres.2014.06.025
  55. Tanaka, N. Kikuta, Y. Kimura, S. Shoda, Chem. Lett. 2015, 44, 846–848.
  56. (a) M. J. McKay, H. M. Nguyen, ACS Catal. 2012, 2, 1563 – 1595; (b) X. Li, J. Zhu, J. Carbohydr. 2012, 31, 284 – 324.
  57. (a) H. Kim, H. Men, C. Lee, J. Am. Chem. Soc. 2004, 126, 1336 – 1337; (b) B. P. Schuff, G. J. Mercer, H. M. Nguyen, Org. 2007, 9, 3173 – 3176.
  58. (a) J. Zeng, J. Ma, S. Xiang, S. Cai, X.-W. Liu, Angew. Chem. Int. Ed. 2013, 52, 5134 – 5137; Angew.Chem. 2013, 125, 5238 – 5241; (b) S. Xiang, Z. Lu, J.He, K. L. M. Hoang, J. Zeng, X.-W.Liu, Chem. Eur. J. 2013, 19, 14047 – 14051; (c) S. Xiang, J.He, Y. Tan, X.-W. Liu, Chem. 2014, 50, 4222 – 4224.
  59. (a) B. M. Trost, F. W. Gowland, J. Org. 1979, 44, 3448 – 3450; (b) L. V. Dunkerton, A. J. Serino, J. Org. Chem. 1982, 47, 2812 – 2814; (c) T. V. RajanBabu, J. Org. Chem. 1985, 50, 3642 – 3644.
  60. Xiang, K. L. M. Hoang, J. He, Y. J. Tan, X. Liu, Angew.Chem. 2015, 127, 614 –617.
  61. Fang, K. Mo, G. Boons, J. Am. Chem. Soc. 2012, 134, 7545−7552.
  62. (a) Palmacci, E. R.; Plante, O. J.; Seeberger, P. H. Eur. J. Org. Chem. 2002, 595–606; (b) Vankayalapati, H.; Jiang, S.; Singh, G. Synlett 2002, 16–25; (c) Oka, N.; Sato, K.; Wada, T. Trends Glycosci. 2012, 24, 152–168.
  63. (a) Hashimoto, S.; Honda, T.; Ikegami, S. J. Chem. Soc., Chem. Commun. 1989, 685–687; (b) Plante, O. J.; Andrade, R. B.; Seeberger, P. H. Org. Lett.1999, 1, 211– 214.
  64. (a) Michalska, M.; Borowiecka, J. J. Carbohydr. Chem. 1983, 2, 99–103; (b) Inazu, T.; Hosokawa, H.; Satoh, Y. Chem. Lett.1985, 297–300; (c) Michalska, M.; Michalski, J. Heterocycles 1989, 28, 1249–1256; (d) Hashimoto, S.; Honda, T.; Ikegami, S. Tetrahedron Lett. 1990, 31, 4769–4772; (e) Hashimoto, S.; Honda, T.; Ikegami, S. Tetrahedron Lett. 1991, 32, 1653–1654; (f) Yamanoi, T.; Nakamura, K.; Sada, S.; Goto, M.; Furusawa, Y.; Takano, M.; Fujioka, A.; Yanagihara, K.; Satoh, Y.; Hosokawa, H.; Inazu, T. Bull. Chem. Soc. Jpn. 1993, 66, 2617–2622; (g) Plante, O. J.; Seeberger, P. H. J. Org. Chem. 1998, 63, 9150–9151.
  65. (a) Hashimoto, S.; Sakamoto, H.; Honda, T.; Ikegami, S. Tetrahedron Lett. 1997, 38, 5181–5184; (b) Hashimoto, S.; Sakamoto, H.; Honda, T.; Abe, H.; Nakamura, S.; Ikegami, S. Tetrahedron Lett. 1997, 38, 8969–8972; (c) Sakamoto, H.; Nakamura, S.; Tsuda, T.; Hashimoto, S. Tetrahedron Lett. 2000, 41, 7691–7695; (d) Plante, O. J.; Palmacci, E. R.; Andrade, R. B.; Seeberger, P. H. J. Am. Chem. Soc. 2001, 123, 9545–9554.
  66. Tatsumi, F. Matsumura, N. Oka, T. Wada, Tetrahedron Letters 54 (2013) 3731–3734.
  67. Matsumura, F.; Oka, N.; Wada, T. Org. 2008, 10, 1557–1560.
  68. (a) M. P. Borrachero-Moya, E. F. Cabrera, G. M. Gomez, L. M. R. Peredes, Carbohydr. 1998, 308, 181 – 190; (b) P. V. Murphy, J. L. O’Brien, A. B. Smith III, Carbohydr. Res. 2001, 334, 327 – 335; (c) R. S. Babu, G. A. O’Doherty, J. Am. Chem. Soc. 2004, 126, 3428 – 3429; (d) G. Fakha, D. Sinou, Molecules 2005, 10, 859 – 870; (e) S. Hotha, A. Tripathi, J. Comb. Chem. 2005, 7, 968 – 976; (f) D. Domon, K. Fujiwara, Y. Ohtaniuchi, A. Takezawa, S. Takeda, H. Kawaski, A. Murai, H. Kawai, T. Suzuki, Tetrahedron Lett. 2005, 46, 8279 – 8283; (g) P. Tiwari, A. K. Misra, J. Org. Chem. 2006, 71, 2911 – 2913; (h) R. S. Babu, S. R. Guppi, G. A. O’Doherty, Org. Lett. 2006, 8, 1605 – 1608; (i) A. Guaragna, D. D’Aonzo, C. Paolella, C. Napolitano, G. Palumbo, J. Org. Chem. 2010, 75, 3558 – 3568; (j) R. S. Babu, Q. Chen, S.-W. Kang, M. Zhou, G. A. O’Doherty, J. Am. Chem. Soc. 2012, 134, 11952 – 11955.
  69. (a) R. J. Ferrier, J. Chem. Soc. 1964, 5443 – 5449; (b) D. M. Ciment, R. J. Ferrier, J. Chem. Soc. C 1966, 441 – 445; (c) R. J. Ferrier, N. Prasad, Chem. Commun. (London). 1968, 476 – 477; (d) R. J. Ferrier, N. Prasad, J. Chem. Soc. C 1969, 570 – 574; (e) R. J. Ferrier, N. Prasad, J. Chem. Soc. C 1969, 581 – 586.
  70. (a) H. Kim, H. Men, C. Lee, J. Am. Chem. Soc. 2004, 126, 1336 – 1337; (b) B. P. Schuff, G. J. Mercer, H. M. Nguyen, Org. Lett. 2007, 9, 3173 – 3176; (c) R. Balamurugan, S. R. Koppolu, Tetrahedron 2009, 65, 8139 – 8142.
  71. (a) R. R. P. Torregrosa, Y. Ariyarathna, K. Chattopadhyay, J. A. Tunge, J. Am. Chem. Soc. 2010, 132, 9280 – 9282; (b) J. D. Weaver, B. J. Ka, D. K. Morris, W. Thompson, J. A. Tunge, J. Am. Soc. 2010, 132, 12179 – 12181; (c) R. Jana, J. J. Partridge, J. A. Tunge, Angew. Chem. 2011, 123, 5263 – 5267; Angew. Chem. Int. Ed. 2011, 50, 5157 – 5161; (d) J. D. Weaver, A. Recio, A. J. Grenning, J. A. Tunge, Chem. Rev. 2011, 111, 1846 – 1913.
  72. (a) B. M. Trost, J. Xu, J. Am. Chem. Soc. 2005, 127, 17180 – 17281; (b) B. M. Trost, R. N. Bream, J. Xu, Angew. 2006, 118, 3181 – 3184; Angew. Chem. Int. Ed. 2006, 45, 3109 – 3112; (c) B. M. Trost, J. Y. Xu, T. Schmidt, J. Am. Chem. Soc. 2009, 131, 18343 – 18357; (d) B. M. Trost, B. Schaffner, M. Osipov, D. A. A. Wilton, Angew. Chem. 2011, 123, 3610 – 3613; Angew. Chem. Int. Ed. 2011, 50, 3548 – 3551.
  73. (a) D. C. Behenna, B. M. Stoltz, J. Am. Chem. Soc. 2004, 126, 15044 – 15045; (b) N. H. Sherden, D. C. Behenna, S. C. Virgil, B. M. Stoltz, Angew. Chem. 2009, 121, 6972 – 6975; Angew. Chem. Int. Ed. 2009, 48, 6840 – 6843; (c) D. C. Behenna, Y. Liu, T. Yurino, J. Kim, D. E. White, S. C. Virgil, B. M. Stoltz, Nat. Chem. 2011, 4, 130 – 133.
  74. Xiang, Z. Lu, J. He, K. L. M. Hoang, J. Zeng, X. Liu, Chem. Eur. J. 2013, 19, 14047 – 14051.
  75. Xiang, J. He, Y. J. Tan, X. Liu, J. Org. Chem. (dx.doi.org/10.1021/jo502078c).
  76. (a) A. J. Fairbanks, Synlett 2003, 2003, 1945–1958; (b) K.-H. Jung, M. Müller, R. R. Schmidt, Chem. 2000, 100, 4423–4442; For representative research papers, see for example: (c) Q.-W. Liu, H.-C.Bin, J.-S.Yang, Org. Lett. 2013, 15, 3974-3977; (d) E. Attolino, T. W. D. F. Rising, C. D. Heidecke, A. J. Fairbanks, Tetrahedron: Asymmetry 2007, 18, 1721-1734; (e) E. Attolino, A. J. Fairbanks, Tetrahedron Lett. 2007, 48, 3061–3064; (f) I. Cumpstey, K. Chayajarus, A. J. Fairbanks, A. J. Redgrave, C. M. P. Seward, Tetrahedron: Asymmetry 2004, 15, 3207–3221; (g) M. R. Pratt, C. D. Leigh, C. R. Bertozzi, Org. Lett. 2003, 5, 3185–3188; (h) Y. Ito, H. Ando, M. Wada, T. Kawai, Y. Ohnish, Y. Nakahara, Tetrahedron 2001, 57, 4123–4132; (i) G. Scheffler, Michael E. Behrendt, Richard R. Schmidt, Eur. J. Org. Chem. 2000, 2000, 3527–3539; (j) G. Stork, J. J. La Clair, J. Am. Chem. Soc. 1996, 118, 247–248; (k) F. Barresi, O. Hindsgaul, Can. J. Chem. 1994, 72, 1447–1465.
  77. (a) G. Chen, X. Gu, L. Chen, X. Wang, Y.-L. Chen, J. Shen, W. Zeng, Protein and Peptide Letters, accepted for publication; (b) Y.-L. Chen et al, unpublished results.
  78. Liu, B. Zhang, X. Gu, G. Chen, L. Chen, X. Wang, B. Xiong, Q. You, Y. Chen, J. Shen, Carbohydrate Research (2014), DOI: http://dx.doi.org/10.1016/j.carres.2014.05.010

Regular Issue Subscription Review Article
Volume 03
Issue 01
Received 04/04/2025
Accepted 15/04/2025
Published 15/04/2025
Publication Time 11 Days


My IP

PlumX Metrics