In vitro and In vivo Trypanocidal Activity of Methanolic Extract of Lantana camara leaves on Trypanosoma brucei in Laboratory Mice


Year : 2024 | Volume : 02 | Issue : 02 | Page : 32-41
    By

    Ajaegbu Ernest Chinedu,

  • Ezekiel Kogi,

  1. Assistant Chief Scientific Officer, National Biotechnology Development Agency, , Nigeria
  2. Professor, Department of Zoology, Ahmadu Bello University, Zaria, Nigeria

Abstract

In this study, the methanol extract of Lantana camara leaves were tested for their trypanocidal activity in vitro in a microtiter plate and in vivo using male laboratory mice. Five different concentrations 10mg/ml, 20 mg/ml, 30 mg/ml, 40mg/ml, and 50mg/ml of the extract were prepared and the time taken to immobilize the parasites were recorded. The in vitro results showed that the leave extract at concentrations of 50 mg/ml had the most promising trypanocidal activity against Trypanosoma brucei. The LD50 value calculated from the result of the acute toxicity test was found to be 952 mg/kg. Based on this result, three different concentrations of the leave extract were prepared namely 200 mg/kg, 400mg/kg, and 800mg/kg body weight and administered to male laboratory mice in the in vivo studies. The result of the in vivo trypanocidal activity revealed that the methanol extract had no prophylactic effect against Trypanosoma brucei. However, in the curative group there was consistent parasitaemic suppression which was accompanied by prolonged time of survivals especially with treatment doses of 400mg/kg and 800mg/kg body weight daily administered intraperitoneally, even though the number of parasites were not totally wiped out within the 7 days of treatment. In the management of trypanosomiasis, the findings in this study are indicative of the trypanocidal potential of Lantana camara. Hence, we recommended that the extract of the leaves as well as other parts of this plant should be further evaluated for trypanocidal activities.

Keywords: Lantana Camara, Trypanosoma Brucei, methanol extract, trypanocidal activity, In vitro and In vivo

[This article belongs to International Journal of Biochemistry and Biomolecule Research (ijbbr)]

How to cite this article:
Ajaegbu Ernest Chinedu, Ezekiel Kogi. In vitro and In vivo Trypanocidal Activity of Methanolic Extract of Lantana camara leaves on Trypanosoma brucei in Laboratory Mice. International Journal of Biochemistry and Biomolecule Research. 2024; 02(02):32-41.
How to cite this URL:
Ajaegbu Ernest Chinedu, Ezekiel Kogi. In vitro and In vivo Trypanocidal Activity of Methanolic Extract of Lantana camara leaves on Trypanosoma brucei in Laboratory Mice. International Journal of Biochemistry and Biomolecule Research. 2024; 02(02):32-41. Available from: https://journals.stmjournals.com/ijbbr/article=2024/view=190697


Browse Figures

References

1. Nayakundi J, Pentreath VW. Trypanosomiasis: An overview of the disease in Africa. Parasitology Today. 1999;15(5):186–190.
2. Brun R, Blum J, Chappuis F, Burri C. Human African trypanosomiasis. Lancet. 2010;375(9709):148–159. doi: 10.1016/S0140-6736(09)60829-1.
3. Van Den Abbeele J, Rotureau B. Morphology and anatomy of trypanosome transmission by tsetse. Int J Parasitol. 2013;43(3–4):115–121.
4. Franco JR, Simarro PP, Diarra A, Jannin JG. Epidemiology of human African trypanosomiasis. Clin Epidemiol. 2014:6:257–275. doi: 10.2147/CLEP.S39728.
5. Coura JR, Borges-Pereira J. Chagas disease: 100 years after its discovery. A systemic review. Acta Trop. 2010;115(1–2):5–13. doi: 10.1016/j.actatropica.2010.03.008.
6. Desquesnes M, Holzmuller P, Lai DH, Dargantes A, Lun ZR, Jittaplapong S. Trypanosoma evansi and surra: A review and perspectives on transmission, epidemiology and control, impact, and zoonotic aspects. Biomed Res Int. 2013:2013:321237. doi: 10.1155/2013/321237.
7. Samdi SM, Abenga JN, Kalgo A, Atsanda NN, Usman AO. Epidemiological survey of animal trypanosomosis in northern Nigeria. Afr J Biomed Res. 2008;11(3):229–234.
8. Majekodunmi AO, Fajinmi A, Welburn SC. Shifting boundaries: Climate change, conflict and cattle diseases in the Nigerian pastoralist system. Int J Parasitol. 2013;43(13–14):1189–1197.
9. Jannin J, Cattand P. Treatment and control of human African trypanosomiasis. Curr Opin Infect Dis. 2004;17(6):565–571. doi: 10.1097/00001432-200412000-00009.
10. Vale GA, Torr SJ. User-friendly bait technology for tsetse fly control. Trends Parasitol. 2005;21(8):317–321. doi: 10.1111/j.1365-2915.2005.00573.x.
11. Brown RC, Evans DA, Vickerman K. Changes in antigenic variation of Trypanosoma brucei in response to host immune pressure. Parasitology Today. 1990;6(1):10–15.
12. Babokhov P, Kazibwe AJN, Dardaillon I, Thiberge S, Atouguia J, Oliveira F. African trypanosomiasis: Major advances and challenges in drug development. Future Microbiol. 2013;8(8):937–951.
13. Fairlamb AH, Horn D. Melarsoprol and suramin: Drugs from a bygone era still used for treating sleeping sickness. Parasitol. 2018;145(10):1317–1326.
14. Fox JA, Kohler P, Cross GAM. Antigenic variation in African trypanosomes: Mechanisms and implications for vaccine development. Annu Rev Microbiol. 1993;47:711–743.
15. Kagira JM, Maina N. Occurrence of trypanosomiasis in small ruminants in Kenya: A review. Small Rumin Res. 2007;70(1):1.
16. Magez S, Radwanska M, Beschin A, Sekikawa K, De Baetselier P. Tumor necrosis factor (TNF) is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect Immun. 1999;67(6):3128–3132. doi: 10.1128/iai.67.6.3128-3132.1999.
17. Paulneck S, Coller BS. Cell adhesion and its role in pathogenesis and treatment of disease. Ann Rev Med. 2001;52:453–470.
18. Barry JD. The role of antigenic variation in the persistence of African trypanosomiasis. Philos Trans R Soc Lond B Biol Sci. 1997;352(1359):1307–1314.
19. Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–480. doi: 10.1038/nrc2394.
20. Nok A, Esievo K, Longdet I, Arowosafe S, Onyenekwe P, Gimba C, et al. Trypanocidal potentials of Azadirachta indica: In vivo activity of leaf extract against Trypanosoma brucei brucei. J Clin Biochem Nutr. 1993;15:113–118. doi: 10.3164/JCBN.15.113.
21. Ekanem AP, Udoh FV. Antiplasmodial and trypanocidal activity of ethanolic leaf extracts of Costus afer. Afr J Biomed Res. 2009;12(3):171–174.
22. Jose A, Bravo B, Sauvain M, Gimenez AT, Balanza E, Serani L, et al. Trypanocidal withanolides and withanolide glycosides from Dunalia brachyacantha. J Nat Prod. 2001;64(6):720–725.
23. Atawodi SE, Bulus T, Ibrahim S, Ameh DA, Nok AJ, Mamman M, et al. In vitro trypanocidal effect of methanolic extract of some Nigerian savannah plants. Afr J Biotechnol. 2003;2(9):317–321.
24. Barrett MP, Croft SL. Management of trypanosomiasis and leishmaniasis. Br Med Bull. 2012;104(1):175–196. doi: 10.1093/bmb/lds031.
25. Nwude N, Ibrahim MA, Aliu YO, Ogunsusi RA. Traditional concepts of animal disease and treatment among Fulani Herdsmen in Kaduna State of Nigeria. Pastoral Development Network, 16c.
26. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation, and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med. 2010;8(1):1–10.
27. National Research Council. (2011). Guide for the Care and Use of Laboratory Animals. 8th ed. Washington, DC: The National Academies Press. doi: 10.17226/12910.
28. Owolabi AT. Phytochemical and biological studies on selected medicinal plants. J Ethnopharmacol. 1990;28(1):123–130.
29. Herbert WJ, Lumsden WHR. Trypanosoma brucei: A rapid “matching” method for estimating the host’s parasitemia. Exp Parasitol. 1976;40(3):427–431. doi: 10.1016/0014-4894(76)90110-7.
30. Ene A. In vitro and In vivo antitrypanosomal effects of petroleum ether, chloroform and methanol extracts of Artemisia maritima Linn. Br J Pharm Res. 2014;4:751–758. doi: 10.9734/BJPR/2014/7631.
31. Chechet G, Yahaya J, Nok A. In vitro and in vivo anti-trypanosomal potentials of Afrormosia laxiflora and Khaya senegalensis against Trypanosoma brucei brucei. Niger Vet J. 2018;39(3):269–284. doi: 10.4314/nvj.v39i3.10.
32. Ede S, Aguiyi J, Omale S, Ede R. Anti-trypanosomal, antioxidant and antimicrobial activities of the fruiting bodies of Ganoderma lucidum (W. Curt.: Fr) (Ganodermataceae) aqueous extract. Journal of Pharmacy & Bioresources. 2021;18(3). doi: 10.4314/jpb.v18i3.1.
33. Freiburghaus F, Kaminsky R, Nkunya MHH, Brun R. Evaluation of African medicinal plants for their in vitro trypanocidal activity. J Ethnopharmacol. 1996;55(1):1–11. doi: 10.1016/S0378-8741(96)01458-3.
34. Testa B, Kramer SD. The biochemistry of drug metabolism–an introduction: Part 4. Reactions of conjugation and their enzymes. Chem Biodivers. 2008;5(11):2171–2336. doi: 10.1002/cbdv.200890199.
35. Goodman LS, Gilman A. Goodman & Gilman’s: The Pharmacological Basis of Therapeutics (8th ed.). McGraw-Hill.
36. Van Reet N, Sternberg JM. Trypanosoma brucei interactions with the host immune system: on the road to pathogenicity. Future Microbiol. 2018;13(4):451–466. doi: 10.2217/fmb-2017-0189.
37. Courtin F, Ménard R. Current and future options for the treatment of human African trypanosomiasis. Nat Rev Drug Discov. 2010;9(9):754–755.
38. Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol. 1983;54(4):275–287. doi: 10.1007/BF01234480.


Regular Issue Subscription Original Research
Volume 02
Issue 02
Received 06/11/2024
Accepted 21/11/2024
Published 24/12/2024


Loading citations...

Views: 0