Production of n-butanol from biomass by two step fermentation process using Staphylococcus sciuri

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2024 | Volume :02 | Issue : 02 | Page : –
By
vector

Bechan Sharma,

  1. Professor& Head, Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India

Abstract document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_128757’);});Edit Abstract & Keyword

This study explores the sustainable production of n-butanol from wheat husk through a two-step bioconversion process. Wheat husk, an abundant agricultural residue, was first fermented into butyric acid using Bacillus subtilis. The resultant butyric acid was then converted into n-butanol using Staphylococcus sciuri. The process leverages biological fermentation to create value-added chemicals from lignocellulosic biomass, offering an eco-friendly alternative to petrochemical methods. Two steps fermentation process was carried to increase the final yield of the product as well as to check the effect on n-butanol yield with butyric acid. Gas Chromatography-Mass Spectrometry (GC-MS) was used to verify both the production and purity of n-butanol. The findings suggest that wheat husk can serve as an efficient feedstock for n-butanol production, potentially contributing to biofuel and green chemical industries. Also, the results show that with optimizing the fermentation parameters, we can obtain maximum yield of butanol from butyric acid fermented from wheat husk.

Keywords: n-butanol, wheat husk, Bacillus subtilis, lignocelluloses biomass, Staphylococcus sciuri.

[This article belongs to International Journal of Biochemistry and Biomolecule Research (ijbbr)]

How to cite this article:
Bechan Sharma. Production of n-butanol from biomass by two step fermentation process using Staphylococcus sciuri. International Journal of Biochemistry and Biomolecule Research. 2024; 02(02):-.
How to cite this URL:
Bechan Sharma. Production of n-butanol from biomass by two step fermentation process using Staphylococcus sciuri. International Journal of Biochemistry and Biomolecule Research. 2024; 02(02):-. Available from: https://journals.stmjournals.com/ijbbr/article=2024/view=0

Full Text PDF

References
document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_128757’);});Edit

1. M. F. Ibrahim, S. W. Kim, and S. Abd-Aziz, “Advanced bioprocessing strategies for biobutanol production from biomass,” Renewable and Sustainable Energy Reviews, vol. 91, pp. 1192-1204, 2018.

2. Y. S. Jang et al., “Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering,” Biotechnology journal, vol. 7(2), pp. 186-198, 2012.

3. Y. S. Jang, A. Malaviya, C. Cho, J. Lee, and S. Y. Lee, “Butanol production from renewable biomass by clostridia,” Bioresource technology, vol. 123, pp. 653-663, 2012.

4. S. H. Lee et al., “Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia,” Applied microbiology and biotechnology, vol. 100, pp. 8255-8271, 2016.

5. N. K. N. Al-Shorgani, M. S. Kalil, and W. M. W. Yusoff, “Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4,” Bioprocess and biosystems engineering, vol. 35, pp. 817-826, 2012.

6. X. Kong, A. He, J. Zhao, H. Wu, and M. Jiang, “Efficient acetone–butanol–ethanol production (ABE) by Clostridium acetobutylicum XY16 immobilized on chemically modified sugarcane bagasse,” Bioprocess and biosystems engineering, vol. 38, pp. 1365-1372, 2015.

7. Z. Liu, Y. Ying, F. Li, C. Ma, and P. Xu, “Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran,” ournal of Industrial Microbiology and Biotechnology, vol. 37(5), pp. 495-501, 2010.

8. T. Yoshida, Y. Tashiro, and K. Sonomoto, “Novel high butanol production from lactic acid and pentose by Clostridium saccharoperbutylacetonicum,” Journal of bioscience and bioengineering, vol. 114(5), pp. 526-530, 2012.

9. Y. Tashiro and K. Sonomoto, “Advances in butanol production by clostridia,” Current research, technology and education topics in applied microbiology and microbial biotechnology, vol. 2, pp. 1383-94, 2010.

10. M. H. Abd-Alla and A. W. E. El-Enany, “Production of acetone-butanol-ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis,” Biomass and bioenergy, vol. 42, pp. 172-178, 2010.

11. N. Zhao et al., “Effect of ethanol and lactic acid pre-fermentation on putrefactive bacteria suppression, hydrolysis, and methanogenesis of food waste,” Energy & Fuels, vol. 30, no. (4), pp. 2982-2989., 2013.

12. M. Kumar and K. Gayen, “Developments in biobutanol production: new insights,” Applied Energy, vol. 88(6), pp. 1999-2012, 2011.

13. N. Mahanta, A. Gupta, and S. K. Khare, “Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate,” Bioresource technology, vol. 99(6), pp. 1729-1735, 2008.

14. L. Goyal, N. K. Jalan, and S. Khanna, “Butanol tolerant bacteria: isolation and characterization of butanol tolerant Staphylococcus sciuri sp,” Journal of Biotech Research, vol. 10, pp. 68-77, 2019.

15. N. Qureshi and T. C. Ezeji, “Butanol,‘a superior biofuel’production from agricultural residues (renewable biomass): recent progress in technology,” Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy, vol. 2(4), pp. 319-330, 2008.

16. S. Nanda, A. K. Dalai, and J. A. Kozinski, “Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion,” Energy Science & Engineering, vol. 2(3), pp. 138-148, 2014.

17. H. Amiri and K. Karimi, “Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives,” Bioresource technology, vol. 270, pp. 702-721, 2018.

18. A. Boonsombuti, O. Trisinsub, and A. Luengnaruemitchai, “Comparative study of three chemical pretreatments and their effects on the structural changes of rice straw and butanol production,” Waste and biomass valorization, vol. 11, pp. 2771-2781, 2020.

19. N. R. Baral and A. Shah, “Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass,” Applied microbiology and biotechnology, vol. 98, pp. 9151-9172, 2014.

20. D. T. Jones and D. Woods, “Acetone Butanol fermentation revisited,” Microbiological reviews, vol. 50(4), pp. 484-524, 1986.

21. D. E. Ramey and S. T. Yang, “Production of butyric acid and butanol from biomass (No. DOE-ER86106),” Environmental Energy Inc., Blacklick, OH (United States), 2005.

22. J. Li, Y. Zhang, S. Shi, and M. Tu, “Effect of residual extractable lignin on acetone–butanol–ethanol production in SHF and SSF processes,” Biotechnology for biofuels, vol. 13, pp. 1-12, 2020.

23. Q. Jin, N. Qureshi, H. Wang, and H. Huang, “Acetone-butanol-ethanol (ABE) fermentation of soluble and hydrolyzed sugars in apple pomace by Clostridium beijerinckii P260,” Fuel, vol. 244, pp. 536-544, 2019.

24. I. Veza, M. F. M. Said, and Z. A. Latiff, “Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation,” Biomass and Bioenergy, vol. 144, p. 105919, 2021.

25. Couto N., Pham TK., Evans C., Noirel J., Wright PC Raut MP., “Quantitative proteomic analysis of the infuence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824,” Biotechnology & Biofuels, vol. 9(11), p. 113, 2016.

26. A. T. W. M. Hendriks and G. Zeeman, “Pretreatments to enhance the digestibility of lignocellulosic biomass,” Bioresource technology, vol. 100(1), pp. 10-18, 2009.

27. M. Taherdanak, H. Zilouei, and K. Karimi, “The influence of dilute sulfuric acid pretreatment on biogas production from wheat plant,” International journal of green energy, vol. 3(11), pp. 1 1129-1134, 2016.

28. J. J. Quiroz-Ramírez, E., Hernández-Castro, S. Sanchez-Ramirez, J. G. Segovia-Hernández, and J. M. Ponce-Ortega, “Optimal planning of feedstock for butanol production considering economic and environmental aspects,” ACS Sustainable Chemistry & Engineering, vol. 5(5), pp. 4018-4030, 2017.

29. S. Bhuvaneshwari, H. Hettiarachchi, and J. N. Meegoda, “Crop residue burning in India: policy challenges and potential solutions,” International journal of environmental research and public health, vol. 16(5), p. 832, 2019.

30. Y. Singh and H. S. Sidhu, “Management of cereal crop residues for sustainable rice-wheat production system in the Indo-Gangetic plains of India,” Proceedings of the Indian National Science Academy, vol. 80(1), pp. 95-114, 2014.

31. C. Maes and J. A. Delcour, “Alkaline hydrogen peroxide extraction of wheat bran non-starch polysaccharides,” Journal of Cereal Science, vol. 34(1), pp. 29-35, 2001.

32. L. Regestein, E. W. Doerr, A. Staaden, and L. Rehmann, “Impact of butyric acid on butanol formation by Clostridium pasteurianum,” Bioresource Technology, vol. 196, pp. 153-159, 2015.

33. Y., Takeda, K. Tashiro, G. Kobayashi, K. Sonomoto, A. Ishizaki, and S. Yoshino, “High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method,” Journal of bioscience and bioengineering, vol. 98(4), pp. 263-268, 2004.

34. Q., Liu, Y. Zhou and W. Yuan, “Kinetic modeling of butyric acid effects on butanol fermentation by Clostridium saccharoperbutylacetonicum,” New Biotechnology, vol. 55, pp. 118-126, 2020.

35. Y. D. Singh and P. & Bora, U. Mahanta, “Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production,” Renewable Energy, vol. 103, pp. 490-500, 2017.

36. A. & Yaman, S. Özyuğuran, “Prediction of calorific value of biomass from proximate analysis,” Energy Procedia, vol. 107, pp. 130-136, 2017.

37. E. G. & Demsash, H. D. Bacha, “Extraction and characterization of nanocellulose from Eragrostis teff straw,” Research square, 2021.

38. M. Thakur, A. Sharma, V. Ahlawat, and M. & Goswami, S. Bhattacharya, “Process optimization for the production of cellulose nanocrystals from rice straw derived α-cellulose,” Materials Science for Energy Technologies, vol. 3, pp. 328-334, 2020.

39. A. Cabiac, E. Guillon, F. Chambon, C. Pinel, and F.& Essayem, N. Rataboul, “Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations,” Applied Catalysis A: General, vol. 402(1-2), pp. 1-10, 2011.

40. T. P. Silva et al., “Box–Behnken experimental design for the optimization of enzymatic saccharification of wheat bran,” Biomass Conversion and Biorefinery, pp. 1-8, 2021.

41. A. A. Tesfaw and B. Z. Tizazu, “Reducing sugar production from Teff straw biomass using dilute sulfuric acid hydrolysis: Characterization and optimization using response surface methodology,” International Journal of Biomaterials, vol. 1, p. 2857764, 2021.

42. N. A. Khamis, S. Shamsudin, N. S. Abd Rahman, and K. F. Kasim, “Effects of autohydrolysis on rice biomass for reducing sugars production,” Materials Today, vol. 16, pp. 2078-2087, 2019.

43. F. Demirel, M. Germec, and I. Turhan, “Fermentable sugars production from wheat bran and rye bran: response surface model optimization of dilute sulfuric acid hydrolysis,” Environmental techniques, vol. 43, no. 24, pp. 3779-3800, 2022.

44. T. Akhtar, A.S. Hashmi, and M. et al Tayyab, “Bioconversion of Agricultural Waste to Butyric Acid Through Solid State Fermentation by Clostridium tyrobutyricum,” Waste Biomass Valor, vol. 11, pp. 2067–2073, 2020.

45. C. Zhang, E., Yang, E. Hua, Y. Fangxiao, and M. Yujiu, “Current progress on butyric acid production by fermentation,” Current microbiology, vol. 59, pp. 656-663, 2009.

46. M. Dwidar, S. Kim, B.S. Jeon, Y. Um, and R.J., Sang, Mitchell, “Co-culturing a novel Bacillus strain with Clostridium,” Biotechnology for biofuels, vol. 6, pp. 1-10, 2013.

47. S., Santra, S. Mondal, S. Rakshit, S. K. Halder, M. Hossain, and K. C. Mondal, “Saccharification of lignocellulosic biomass using an enzymatic cocktail of fungal origin and successive production of butanol by Clostridium acetobutylicum.,” Bioresource technology, vol. 343, p. 126093, 2022.

48. S. Yadav, V. Singh, C. Mahata, and D. Das, “Optimization for simultaneous enhancement of biobutanol and biohydrogen production,” International Journal of Hydrogen Energy, vol. 46(5), pp. 3726-3741, 2021.

49. A. Elmeligy, P. Mehrani, and J. Thibault, “Artificial neural networks as metamodels for the multiobjective optimization of biobutanol production,” Applied Sciences, vol. 8(6), p. 961, 2018.

50. H. Xie, H. Du, and X. & Si, C. Yang, “Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials,” International Journal of Polymer Science, 2018.

51. I. & Plackett, D. Siró, “Microfibrillated cellulose and new nanocomposite materials: a review,” Cellulose, vol. 17, pp. 459-494, 2010.

52. S. & Dutta, H. Rashid, “Industrial applications of cellulose extracted from agricultural and food industry wastes,” Handbook of Biomass Valorization for Industrial Applications, pp. 417-443, 2022.

53. D. Klemm, B. Heublein, and H. P. & Bohn, A. Fink, “Cellulose: fascinating biopolymer and sustainable raw material,” Angewandte chemie international edition, vol. 44(22), pp. 3358-3393, 2005.

54. J. & Adibkia, K. Shokri, “Application of cellulose and cellulose derivatives in pharmaceutical industries,” In Cellulose-medical, pharmaceutical and electronic applications, 2013.

55. J. Zhang et al., “All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid,” ACS Sustainable Chemistry & Engineering, vol. 4(8) , pp. 4417-4423, 2016.

56. A. & Sain, M. Alemdar, “Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls,” Bioresource technology, vol. 99(6), pp. 1664-1671, 2008.

57. N. Sathitsuksanoh and A. & Zhang, Y. H. P. George, “New lignocellulose pretreatments using cellulose solvents: a review,” Journal of Chemical Technology & Biotechnology, vol. 88(2), pp. 169-180, 2013.

58. U. & Anand, N. Tyagi, “Prospective of Waste Lignocellulosic Biomass as Precursors for the Production of Biochar: Application, Performance, and Mechanism—A Review,” BioEnergy Research, pp. 1-26, 2023.

59. R. Chandra and H. & Hasegawa, T. Takeuchi, “Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production,” Renewable and Sustainable Energy Reviews, vol. 16(3), pp. 1462-1476, 2012.

60. T. S. Neto et al., “Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire,” Atmospheric Environment, vol. 43(2), pp. 438-446, 2009.

61. Q. Lu, X. Yu, A. E. A. Yagoub, and H. & Zhou, C. Wahia, “Application and challenge of nanocellulose in the food industry,” Food Bioscience, vol. 43, p. 101285, 2021.

62. S. M. & Woods, H. J. Mukherjee, “X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid,” Biochimica et biophysica acta, vol. 10, pp. 499-511, 1953.

63. K. Songsurang and K. & Muangsin, N. Siraleartmukul, “Mucoadhesive drug carrier based on functional-modified cellulose as poorly water-soluble drug delivery system,” Journal of microencapsulation, vol. 32(5), pp. 450-459, 2015.

64. S. Zuppolini, A. Salama, I. Cruz-Maya, and V. & Borriello, A. Guarino, “Cellulose amphiphilic materials: Chemistry, process and applications,” cellulose, vol. 14(2), p. 386, 2022.

65. F. Xie and P. & Van den Mooter, G. Fardim, “Porous soluble dialdehyde cellulose beads: a new carrier for the formulation of poorly water-soluble drugs,” International Journal of Pharmaceutics, vol. 615, p. 121491, 2022.

66. S. Wan, Y. Sun, and X. & Tan, F. Qi, “Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion,” Aaps pharmscitech, vol. 13, pp. 159-166, 2012.

67. K. Yamamoto, M. Nakano, T. Arita, and Y. & Nakai, Y. Takayama, “Dissolution behavior and bioavailability of phenytoin from a ground mixture with microcrystalline cellulose,” Journal of Pharmaceutical Sciences, vol. 65(10), pp. 1484-1488, 1976.

68. A. K. Sharma, R. K. Keservani, S. C. Dadarwal, and Y. L. & Ramteke, S. Choudhary, “Formulation and in vitro characterization of cefpodoxime proxetil gastroretentive microballoons,” Journal of Faculty of Pharmacy, Tehran University of Medical Sciences, vol. 19(1), p. 33, 2011.

69. N. S. Abbas, M. Amin, M. A. Hussain, K. J. Edgar, and M. N. & Tremel, W. Tahir, “Extended release and enhanced bioavailability of moxifloxacin conjugated with hydrophilic cellulose ethers,” Carbohydrate polymers, vol. 136, pp. 1297-1306, 2016.

70. L. Huang, X. Chen, T. X. Nguyen, H. Tang, and L. & Yang, G. Zhang, “Nano-cellulose 3D-networks as controlled-release drug carriers,” Journal of Materials Chemistry B, vol. 1(23), pp. 2976-2984, 2013.

71. C. J. Wijaya, S. N., Soetaredjo, F. E. Saputra, J. N. Putro, C. X. Lin, and A.& Ismadji, S. Kurniawan, “Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier,” Carbohydrate polymers, vol. 175, pp. 370-376, 2017.

72. K. & Agrawal, S. Chugh, “Cefpodoxime: pharmacokinetics and therapeutic uses,” The Indian Journal of Pediatrics, vol. 70, pp. 227-231, 2003.

73. Y. Pan, J. Wang, and P.& Xiao, H. Cai, “Dual-responsive IPN hydrogel based on sugarcane bagasse cellulose as drug carrier,” International journal of biological macromolecules, vol. 118, pp. 132-140, 2018.

74. A. Mujtaba and M. & Kohli, K. Ali, “Statistical optimization and characterization of pH-independent extended-release drug delivery of cefpodoxime proxetil using Box–Behnken design,” Chemical engineering research and design, vol. 92(1), pp. 156-165, 2014.

75. M. K. & Karthikeyan, M. Deepa, “Cefpodoxime Proxetil Floating Microspheres: Formulation and In VitroEvaluation: Formulation cefpodoxime proxetil floating microspheres,” Iranian journal of pharmaceutical sciences, vol. 5(2), pp. 69-72, 2009.

76. S. & Meenakshisundaram, O. Kathiresan, “Effect of alkali treated and untreated cellulose fibers and human hair on FTIR and tensile properties for composite material applications,” SN Applied Sciences, vol. 4(3), p. 74, 2022.

77. H. Chen et al., “Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers,” Cellulose, vol. 24, pp. 333-347, 2017.

78. L. K. Lazzari, M. V. G. Zimmermann, D. Perondi, V. B. Zampieri, and A. J. & Santana, R. M. C. Zattera, “Production of carbon foams from rice husk,” Materials Research, vol. 22, p. e20190427, 2019.

79. A. E. Karaca, C. Özel, and A. C. & Yücel, S. Özarslan, “The simultaneous extraction of cellulose fiber and crystal biogenic silica from the same rice husk and evaluation in cellulose‐based composite bioplastic films,” Polymer Composites, vol. 43(10), pp. 6838-6853, 2022.

80. M. & Noroozi, B. Dilamian, “Rice straw agri-waste for water pollutant adsorption: Relevant mesoporous super hydrophobic cellulose aerogel,” Carbohydrate polymers, vol. 251, p. 117016, 2021.

81. S. Tang, Q. Dong, and Z. & Miao, Z. D. Fang, “Complete recovery of cellulose from rice straw pretreated with ethylene glycol and aluminum chloride for enzymatic hydrolysis,” Bioresource technology, vol. 284, pp. 98-104, 2019.

82. M. R. Rao, A. N. Bajaj, and A. A. & Aghav, S. S. Pardeshi, “Investigation of nanoporous colloidal carrier for solubility enhancement of Cefpodoxime proxetil,” Journal of pharmacy research, vol. 5(5), pp. 2496-2499, 2012.

83. A. E., Özel, C., Özarslan, A. C. & Yücel, S. Karaca, “The simultaneous extraction of cellulose fiber and crystal biogenic silica from the same rice husk and evaluation in cellulose‐based composite bioplastic films,” Polymer Composites, vol. 43(10), pp. 6838-6853, 2022.

84. A. M. A. Adam, H. A. Saad, A. M. Alsuhaibani, and M. S.& Hegab, M. S. Refat, “Charge-transfer chemistry of azithromycin, the antibiotic used worldwide to treat the coronavirus disease (COVID-19). Part III: A green protocol for facile synthesis of complexes with TCNQ, DDQ, and TFQ acceptors,” Journal of Molecular Liquids, vol. 335, p. 116250, 2021.

85. S. Suganthi, P. Balu, V. Sathyanarayanamoorthi, V. Kannappan, and M. M. & Kumar, R. Kamil, “Structural analysis and investigation of molecular properties of Cefpodoxime acid, a third generation antibiotic,” Journal of Molecular Structure, vol. 1108, pp. 1-15, 2016.


Regular Issue Subscription Original Research
Volume 02
Issue 02
Received 27/10/2024
Accepted 11/11/2024
Published 24/12/2024