Post-Antibiotic Gut Microbiota Recovery in the Rumen: Insights into Colonization Patterns, Population Density, and Diversity Dynamics

Year : 2025 | Volume : 02 | Issue : 02 | Page :
    By

    Md. Emran Hossain,

  1. Professor, Department of Animal Science and Nutrition, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh

Abstract

document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_200764’);});Edit Abstract & Keyword

The post-antibiotic recovery of gut microbiota represents a critical area of research in understanding how microbial communities rebalance and re-establish homeostasis following antibiotic-induced disruptions. Antibiotics, while effective against infections, can cause substantial shifts in gut microbiota, leading to dysbiosis – a state of microbial imbalance that impairs gut health and functions. This recovery process involves multiple complex dynamics, including colonization patterns, population density, and the restoration of microbial diversity. The key factors influencing this recovery are microbial resilience, colonization dynamics, the role of keystone species, competition among microbes, and host-microbiota interactions. Therapeutic strategies, such as the use of probiotics, synbiotics, fecal microbiota transplantation, and alternative antimicrobial therapies, have been explored to aid in microbial recolonization and restore gut functionality. This study aims to comprehensively investigate the mechanisms underlying the post-antibiotic recovery of the gut microbiota. It focuses on understanding how microbial populations reorganize, the role of keystone species in rebuilding ecosystem stability, and the potential of various therapeutic approaches. Additionally, it examines how host factors, such as immune responses and dietary interventions, influence recovery. Insights into these processes will provide critical knowledge for developing strategies to promote healthy microbial communities, improve gut function, and mitigate the long-term impacts of antibiotic treatment on gut health.

Keywords: Antibiotic-induced dysbiosis, colonization dynamics, functional recovery, gut microbiota, host-microbiota diversity, microbial resilience, post-antibiotic recovery

[This article belongs to International Journal of Antibiotics ]

How to cite this article:
Md. Emran Hossain. Post-Antibiotic Gut Microbiota Recovery in the Rumen: Insights into Colonization Patterns, Population Density, and Diversity Dynamics. International Journal of Antibiotics. 2025; 02(02):-.
How to cite this URL:
Md. Emran Hossain. Post-Antibiotic Gut Microbiota Recovery in the Rumen: Insights into Colonization Patterns, Population Density, and Diversity Dynamics. International Journal of Antibiotics. 2025; 02(02):-. Available from: https://journals.stmjournals.com/ijab/article=2025/view=0


document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_200764’);});Edit

References

1. Zhao C, et al. Sialic acid exacerbates gut dysbiosis-associated mastitis through the microbiota-gut-mammary axis by fueling gut microbiota disruption. Microbiome. 2023;11(1):78.

2. Ng KM, et al. Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs. Cell Host Microbe. 2019;26(5):650–665.

3. Clemmons BA, Voy BH, Myer PR. Altering the gut microbiome of cattle: considerations of host-microbiome interactions for persistent microbiome manipulation. Microb Ecol. 2019;77:523–536.

4. Yu Y, et al. Effects of Chlortetracycline Rumen-Protected Granules on Rumen Microorganisms and Its Diarrhea Therapeutic Effect. Front Vet Sci. 2022;9:840442. doi:10.3389/fvets.2022.840442

5. Duan H, Yu L, Tian F, Zhai Q, Fan L, Chen W. Antibiotic-induced gut dysbiosis and barrier disruption and the potential protective strategies. Crit Rev Food Sci Nutr. 2022;62(6):1427–52.

6. Cusack PMV. Alternatives to conventional antibiotics for the prevention and treatment of commonly occurring diseases in feedlot cattle. Aust Vet J. 2024;102(5):229–241.

7. Uyeno Y, Shigemori S, Shimosato T. Effect of probiotics/prebiotics on cattle health and productivity. Microbes Environ. 2015;30(2):126–32. doi:10.1264/jsme2.ME14176

8. Khalil A, Batool A, Arif S. Healthy Cattle Microbiome and Dysbiosis in Diseased Phenotypes. Ruminants. 2022;2(1):134–56. doi:10.3390/ruminants2010009

9. Larsson DGJ, Flach C-F. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20(5):257–269.

10. Jones-Nelson O, et al. Antibacterial monoclonal antibodies do not disrupt the intestinal microbiome or its function. Antimicrob Agents Chemother. 2020;64(5):10–1128. doi:10.1128/AAC.02347-19

11. Sun L, et al. Antibiotic-induced disruption of gut microbiota alters local metabolomes and immune responses. Front Cell Infect Microbiol. 2019;9(APR):99. doi:10.3389/fcimb.2019.00099

12. Fan Q, Zuo J, Wang H, Grenier D, Yi L, Wang Y. Contribution of quorum sensing to virulence and antibiotic resistance in zoonotic bacteria. Biotechnol Adv. 2022;59:107965.

13. Law SR, et al. Life at the borderlands: microbiomes of interfaces critical to One Health. FEMS Microbiol Rev. 2024;48(2). doi:10.1093/femsre/fuae008

14. Araújo D, et al. Emerging approaches for mitigating biofilm-formation-associated infections in farm, wild, and companion animals. Pathogens. 2024;13(4):320.

15. Weimer PJ. Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Front Microbiol. 2015;6(APR):296. doi:10.3389/fmicb.2015.00296

16. Paul C, et al. Bacterial spores, from ecology to biotechnology. Adv Appl Microbiol. 2019;106:79–111. doi:10.1016/bs.aambs.2018.10.002

17. Rawal S, et al. Ruminant Gut Microbiota: Interplay, Implications, and Innovations for Sustainable Livestock Production. In: Sustainable Agriculture Reviews: Animal Biotechnology for Livestock Production 4. Springer; 2024. p. 205–28. doi:10.1007/978-3-031-54372-2_7

18. Lin Q, et al. A Review of the Mechanisms of Bacterial Colonization of the Mammal Gut. Microorganisms. 2024;12(5):1026. doi:10.3390/microorganisms12051026

19. Arshad MA, et al. Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. Anim Nutr. 2021;7(3):883–895. doi:10.1016/j.aninu.2021.03.004

20. Du Y, et al. Colonization and development of the gut microbiome in calves. J Anim Sci Biotechnol. 2023;14(1):46.

21. Qiu Q, et al. Temporal dynamics in rumen bacterial community composition of finishing steers during an adaptation period of three months. Microorganisms. 2019;7(10):410.

22. Quintana-Hayashi MP, et al. Mucus-pathogen interactions in the gastrointestinal tract of farmed animals. Microorganisms. 2018;6(2):55. doi:10.3390/microorganisms6020055

23. Barathan M, et al. The profound influence of gut microbiome and extracellular vesicles on animal health and disease. Int J Mol Sci. 2024;25(7):4024.

24. Garcia M, Bradford BJ, Nagaraja TG. Invited review: ruminal microbes, microbial products, and systemic inflammation. Prof Anim Sci. 2017;33(6):635–650.

25. Garcia-Vallve S, Romeu A, Palau J. Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol. 2000;17(3):352–361.

26. Frazier AN, et al. Connecting the ruminant microbiome to climate change: Insights from current ecological and evolutionary concepts. Front Microbiol. 2024;15:1503315.

27. Perlman D, et al. Concepts and consequences of a core gut microbiota for animal growth and development. Annu Rev Anim Biosci. 2022;10(1):177–201.

28. Han G, Vaishnava S. Microbial underdogs: Exploring the significance of low-abundance commensals in host-microbe interactions. Exp Mol Med. 2023;55(12):2498–2507.

29. Rabetafika HN, et al. Probiotics as antibiotic alternatives for human and animal applications. Encyclopedia. 2023;3(2):561–81.

30. Rodrigues G, Souza Santos L, Franco OL. Antimicrobial Peptides Controlling Resistant Bacteria in Animal Production. Front Microbiol. 2022;13:874153. doi:10.3389/fmicb.2022.874153

31. Rochegüe T, et al. Impact of antibiotic therapies on resistance genes dynamic and composition of the animal gut microbiota. Animals. 2021;11(11):3280.

32. Mahmud MR, et al. Role of bacteriophages in shaping gut microbial community. Gut Microbes. 2024;16(1):2390720.

33. Rebuffat S. Ribosomally synthesized peptides, foreground players in microbial interactions: Recent developments and unanswered questions. Nat Prod Rep. 2022;39(2):273–310.

34. Gralka M, et al. Trophic interactions and the drivers of microbial community assembly. Curr Biol. 2020;30(19):R1176–1188.

35. Greene LK, et al. A role for gut microbiota in host niche differentiation. ISME J. 2020;14(7):1675–1687.

36. Ji S, et al. Ecological restoration of antibiotic-disturbed gastrointestinal microbiota in foregut and hindgut of cows. Front Cell Infect Microbiol. 2018;8(MAR):1–13. doi:10.3389/fcimb.2018.00079

37. Plaizier JC, et al. Enhancing gastrointestinal health in dairy cows. Animal. 2018;12(s2):s399–418.

38. Sirohi SK, Singh N, Dagar SS, Puniya AK. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol. 2012;95(5):1135–1154. doi:10.1007/s00253-012-4262-2

39. Welch CB, et al. Utilizing the Gastrointestinal Microbiota to Modulate Cattle Health through the Microbiome-Gut-Organ Axes. Microorganisms. 2022;10(7). doi:10.3390/microorganisms10071391

40. Canzi E, et al. Effect of lincomycin treatment on intestinal microflora composition and its bile-acid-metabolizing activity. Curr Microbiol. 1985;12(1):1–4. doi:10.1007/BF01567743

41. Baaske L, Gäbel G, Dengler F. Ruminal epithelium: A checkpoint for cattle health. J Dairy Res. 2020;87(3):322–9. doi:10.1017/S0022029920000369

42. Champagne-Jorgensen K, et al. Antibiotics and the nervous system: More than just the microbes? Brain Behav Immun. 2019;77:7–15. doi:10.1016/j.bbi.2018.12.014

43. Chase C, Kaushik RS. Mucosal Immune System of Cattle: All Immune Responses Begin Here. Vet Clin North Am Food Anim Pract. 2019;35(3):431–51. doi:10.1016/j.cvfa.2019.08.006

44. Feng Y, et al. Antibiotics induced intestinal tight junction barrier dysfunction is associated with microbiota dysbiosis, activated NLRP3 inflammasome and autophagy. PLoS One. 2019;14(6):e0218384.

45. Maertens B, et al. Regulatory role of the intestinal microbiota in the immune response against Giardia. Sci Rep. 2021;11(1):10601.

46. Liu K, et al. Ruminal microbiota–host interaction and its effect on nutrient metabolism. Anim Nutr. 2021;7(1):49–55. doi:10.1016/j.aninu.2020.12.001

47. Han X, et al. Regulation of dietary fiber on intestinal microorganisms and its effects on animal health. Anim Nutr. 2023;14:356–69. doi:10.1016/j.aninu.2023.06.004

48. Gessner DK, Ringseis R, Eder K. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J Anim Physiol Anim Nutr (Berl). 2017;101(4):605–28. doi:10.1111/jpn.12579

49. Shah AM, et al. Fermented foods: Their health-promoting components and potential effects on gut microbiota. Fermentation. 2023;9(2):118.

50. Hu C, et al. Effects of Management, Dietary Intake, and Genotype on Rumen Morphology, Fermentation, and Microbiota, and on Meat Quality in Yaks and Cattle. Front Nutr. 2021;8:755255. doi:10.3389/fnut.2021.755255

51. DeMartino P, Cockburn DW. Resistant starch: impact on the gut microbiome and health. Curr Opin Biotechnol. 2020;61:66–71. doi:10.1016/j.copbio.2019.10.008

52. Wolfswinkel TL. The Effects of Feeding Prebiotics, Antibiotics, and Alternative Proteins during the Preweaning Period to Dairy Calves on Growth, Health, and the Gastrointestinal Microbiota [dissertation]. www.search.proquest.com; 2016.

53. Palmonari A, Federiconi A, Formigoni A. Animal board invited review: The effect of diet on rumen microbial composition in dairy cows. Animal. 2024;101319.

54. Newman AM, Arshad M. The Role of Probiotics, Prebiotics and Synbiotics in Combating Multidrug-Resistant Organisms. Clin Ther. 2020;42(9):1637–48. doi:10.1016/j.clinthera.2020.06.011.

55. Rosa F, Michelotti TC, St-Pierre B, Trevisi E, Osorio JS. Early life fecal microbiota transplantation in neonatal dairy calves promotes growth performance and alleviates inflammation and oxidative stress during weaning. Animals. 2021;11(9):2704.

56. Izuddin WI, Loh TC, Samsudin AA, Foo HL, Humam AM, Shazali N. Effects of postbiotic supplementation on growth performance, ruminal fermentation and microbial profile, blood metabolite and GHR, IGF-1 and MCT-1 gene expression in post-weaning lambs. BMC Vet Res. 2019;15:1–10.

57. Kumar R, et al. Antimicrobial peptides in farm animals: An updated review on its diversity, function, modes of action and therapeutic prospects. Vet Sci. 2020;7(4):1–28. doi:10.3390/vetsci7040206.

58. Bianchessi L, De Bernardi G, Vigorelli M, Dall’Ara P, Turin L. Bacteriophage Therapy in Companion and Farm Animals. Antibiotics. 2024;13(4):294. doi:10.3390/antibiotics13040294.

59. Leggieri PA, et al. Integrating Systems and Synthetic Biology to Understand and Engineer Microbiomes. Annu Rev Biomed Eng. 2021;23(1):169–201. doi:10.1146/annurev-bioeng-082120-022836.


Regular Issue Subscription Review Article
Volume 02
Issue 02
Received 28/02/2025
Accepted 21/03/2025
Published 25/03/2025
Publication Time 25 Days

[last_name]

My IP

PlumX Metrics