This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.
Dr B Sheshu Kumar,
Dr. A. Mrudula Srinivasulu,
- Associate Professor, Prathima Institute Of Medical Sciences, Karimnagar, Telangana, India
- Assistant Professor, Prathima Institute Of Medical Sciences, Karimnagar, Telangana, India
Abstract
The human microbiome, an intricate ecosystem of microorganisms inhabiting the body, is a key regulator of host biochemistry and physiology. This review delves into the complex biochemical pathways influenced by the microbiome, spotlighting critical metabolites like short-chain fatty acids, bile acids, and tryptophan derivatives, which impact immune regulation, energy metabolism, and neurobehavioral functions. By examining interactions between the microbiome and the host, including the influence of genetic factors and metabolite-driven communication networks, this work underscores the microbiome’s pivotal role in sustaining health and its involvement in the development of diseases such as metabolic disorders, cancer, and neurological conditions. Recent advancements in multi-omics technologies, synthetic biology, and AI-driven analytics have significantly advanced microbiome research. These innovations have facilitated the discovery of novel biomarkers, the creation of microbiome-targeted therapies, and the engineering of synthetic microbial communities for therapeutic purposes. The review also highlights the expanding relevance of non-gut microbiomes—such as those in the skin, oral cavity, and respiratory system—and their systemic impacts, broadening the traditional scope of microbiome research. By integrating historical milestones, current progress, and future opportunities, this review emphasizes the transformative potential of microbiome science in diagnostics, therapeutics, and biotechnological applications. Addressing unresolved issues, including inter-kingdom dynamics, environmental factors, and the need for regulatory frameworks, is essential to fully leverage the microbiome’s capabilities. Ultimately, this review positions the microbiome as a cornerstone of precision medicine, paving the way for innovative approaches to chronic disease management, health optimization, and solutions to global sustainability challenges.
Keywords: Human microbiome, SCFAs, bile acids, immune modulation, energy metabolism, multi- omics, synthetic biology, precision medicine, biomarkers, diagnostics.
[This article belongs to International Journal of Antibiotics (ijab)]
Dr B Sheshu Kumar, Dr. A. Mrudula Srinivasulu. Microbial Symphony: Understanding Biochemical Pathways for Precision Medicine and Beyond. International Journal of Antibiotics. 2024; 02(01):28-43.
Dr B Sheshu Kumar, Dr. A. Mrudula Srinivasulu. Microbial Symphony: Understanding Biochemical Pathways for Precision Medicine and Beyond. International Journal of Antibiotics. 2024; 02(01):28-43. Available from: https://journals.stmjournals.com/ijab/article=2024/view=186418
References
- Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–141. doi: 10.1016/j.cell.2014.03.011.
- Buitrago D, et al. Fungal diseases: mechanisms of immune evasion and inflammatory response. J Fungal Dis. 2015;43(3):450-461. doi: 10.1093/mmy/myv057.
- Cani PD, et al. Endotoxemia contributes to inflammation in obesity. Diabetes. 2008;57(11):2982-2990. doi: 10.2337/db08-0349.
- Charbonneau MR, et al. Engineering probiotics for therapeutic applications. Nat Rev Microbiol. 2020;18(5):346-359. doi: 10.1038/s41579-020-0322-1.
- Cohen J, et al. Malaria: Mechanisms of immunity and disease pathogenesis. Nat Rev Immunol. 2010;10(1):66-77. doi: 10.1038/nri2674.
- Cryan JF, et al. The gut-brain axis: Microbiome influences on neurological health. Physiol Rev. 2019;99(4):1877-2013. doi: 10.1152/physrev.00018.2018.
- De Vadder F, et al. Microbiota-produced SCFAs regulate glucose homeostasis via GLP-1 secretion. Nat Commun. 2014;5:5496. doi: 10.1038/ncomms6496.
- Den Besten G, et al. The role of short-chain fatty acids in diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325-2340. doi: 10.1194/jlr.R036012.
- Fujita Y, et al. Microbiome and cancer: Current state and perspectives. Cancer Sci. 2022;113(4):1210-1220. doi: 10.1111/cas.15234.
- Garrett WS. Cancer and the microbiota. Science. 2015;348(6230):80–86. doi: 10.1126/science.aaa4972.
- Gheorghe A, et al. Advances in metabolomics for microbial-host interactions: Implications for health and disease. J Mol Med. 2023;101(4):450–468. doi: 10.1007/s00109-023-02283-9.
- Gonzalez J, et al. The immune response in tuberculosis. Lancet Infect Dis. 2003;3(11):652-659. doi: 10.1016/S1473-3099(03)00866-6.
- Haugen T, et al. Role of immune response in leprosy. J Clin Immunol. 2015;35(5):529-538. doi: 10.1007/s10875-015-0167-3.
- Heinken A, et al. Reconstructing metabolic networks to map host-microbiome interactions. Nat Rev Microbiol. 2015;13(5):259-275. doi: 10.1038/nrmicro3484.
- Kang DW, et al. Long-term benefits of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep. 2019;9(1):5821. doi: 10.1038/s41598-019-42183-0.
- Karlsson FH, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2013;8(2):e56936. doi: 10.1371/journal.pone.0056936.
- Koch R, et al. The etiology of infectious diseases. Berl Klin Wochenschr. 1884.
- Kostic AD, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis. Cell Host Microbe. 2013;14(2):207–215. doi: 10.1016/j.chom.2013.07.007.
- Kundu P, et al. The microbiome in health and disease: Emerging frameworks and tools. Nat Rev Gastroenterol Hepatol. 2017;14(10):693–706. doi: 10.1038/nrgastro.2017.97.
- Ley RE, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–11075. doi: 10.1073/pnas.0505402102.
- Loomba R, Seki E. Non-alcoholic fatty liver disease and the gut microbiome. J Hepatol. 2020;73(1):151–166. doi: 10.1016/j.jhep.2020.02.025.
- Lozupone CA, et al. Diversity, stability, and resilience of the human gut microbiota. Nature. 2012;489(7415):220–230. doi: 10.1038/nature11550.
- Manasson J, et al. Gut microbiome in rheumatoid arthritis. Curr Opin Rheumatol. 2020;32(3):300–307. doi: 10.1097/BOR.0000000000000702.
- Maurice CF, et al. Antibiotics and the gut microbiota. Nat Rev Microbiol. 2013;11(4):233–245. doi: 10.1038/nrmicro2976.
- Mayer EA, et al. Gut/brain axis and the microbiota. J Clin Invest. 2015;125(3):926–938. doi: 10.1172/JCI80046.
- Miller SE, et al. Rickettsial infections and inflammation. J Clin Microbiol. 2017;55(5):1226-1234. doi: 10.1128/JCM.00032-17.
- Pasteur L, et al. On the germ theory and its application to medicine. Med Classics. 1885.
- Parks BW, et al. Microbiome-host interactions in health and disease: Mechanisms and therapeutic opportunities. Cell Host Microbe. 2020;28(3):350–364. doi: 10.1016/j.chom.2020.01.002.
- Ridlon JM, et al. Microbial metabolism of bile salts: Enzymes, pathways, and meta-omics. Trends Microbiol. 2016;24(5):302–313. doi: 10.1016/j.tim.2016.01.002.
- Russell DG. Mycobacterium tuberculosis and the granuloma: A journey to the center of the host. Cell Host Microbe. 2007;4(5):221-227. doi: 10.1016/j.chom.2007.08.009.
- Scollard DM, et al. Leprosy and chronic inflammation. Lancet Infect Dis. 2006;6(4):213-222. doi: 10.1016/S1473-3099(06)70409-1.
- Scriba TJ, et al. Host-directed therapies for tuberculosis. Lancet Respir Med. 2017;5(5):414-423. doi: 10.1016/S2213-2600(16)30467-3.
- Sokolow SH, et al. Schistosomiasis and chronic inflammation: Implications for cancer. Cell Mol Immunol. 2019;16(8):646-658. doi: 10.1038/s41423-019-0227-y.
- Trivedi PJ, et al. Treatment of primary biliary cholangitis: Current and future perspectives. Hepatol Int. 2016;10(1):1–17. doi: 10.1007/s12072-015-9652-7.
- Tyson GW, et al. Community genome sequencing in environmental microbiomes. Nature. 2004;428(6978):37-43. doi: 10.1038/nature02339.
- Vrieze A, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–916. doi: 10.1053/j.gastro.2012.06.031.
- Woese CR, et al. RNA sequencing for phylogeny: A critical tool in microbiome research. PNAS. 1980;77(8):4943-4947. doi: 10.1073/pnas.77.8.4943.
- Xiao L, et al. Short-chain fatty acids in health and disease: A review. J Mol Med. 2021;99(4):497–513. doi: 10.1007/s00109-021-02083-w.
- Yano JM, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–276. doi: 10.1016/j.cell.2015.02.047.
- Zhernakova A, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition. Nature. 2016;535(7610):57–63. doi: 10.1038/nature18644.
- Zschocke S, et al. The role of AI in microbiome research: Opportunities and challenges. Microbiome. 2021;9(1):150-165. doi: 10.1186/s40168-021-01078-4.
International Journal of Antibiotics
Volume | 02 |
Issue | 01 |
Received | 21/11/2024 |
Accepted | 24/11/2024 |
Published | 30/11/2024 |