Geeta Makhija,
Bhakti Gotarne,
Rutuja Mane,
Bhakti More,
- Assistant Professor, Department of Computer Engineering, Parvatibai Genaba Moze College of Engineering, Wagholi, Pune, Maharashtra, India
 - Student, Department of Computer Engineering, Parvatibai Genaba Moze College of Engineering, Wagholi, Pune, Maharashtra, India
 - Student, Department ofDepartment of Computer Engineering, Parvatibai Genaba Moze College of Engineering, Wagholi, Pune Computer Engineering, Parvatibai Genaba Moze College of Engineering, Wagholi, Pune, Maharashtra, India
 - Student, Department of Computer Engineering, Parvatibai Genaba Moze College of Engineering, Wagholi, Pune, Maharashtra, India
 
Abstract
The emergence of the World Wide Web and the rapid growth of online platforms have transformed the landscape of news dissemination. However, the rise of social media has also led to an overwhelming influx of potentially unreliable information, making it increasingly challenging to verify the truthfulness of articles. This verification process has become a daunting task, necessitating a thorough examination of various domain-specific aspects to ascertain the credibility of news content. In response to this issue, machine learning algorithms have shown considerable promise in automatically detecting fake news. Researchers are actively employing a diverse range of performance metrics to evaluate the efficacy of these algorithms. Natural language processing (NLP) techniques are essential in this process, as they aid in data pre-processing, thereby improving the accuracy of machine learning models. By leveraging extracted textual properties, researchers can train and evaluate machine learning classifiers designed to distinguish between genuine and fabricated content. This includes leveraging various features and performance metrics to evaluate the effectiveness of these classifiers. Ultimately, this study aims to contribute to the ongoing efforts to combat misinformation in the digital age by providing insights into the intersection of machine learning, NLP, and news verification.
Keywords: Machine learning, fake news, MultinomialNB, social media, term frequency-inverse document frequency (TF-IDF)
[This article belongs to Current Trends in Information Technology ]
Geeta Makhija, Bhakti Gotarne, Rutuja Mane, Bhakti More. Fake News Detection System Using MultinomialNB and Django Framework. Current Trends in Information Technology. 2024; 15(01):23-32.
Geeta Makhija, Bhakti Gotarne, Rutuja Mane, Bhakti More. Fake News Detection System Using MultinomialNB and Django Framework. Current Trends in Information Technology. 2024; 15(01):23-32. Available from: https://journals.stmjournals.com/ctit/article=2024/view=191757
References
- 1. Wu C, Wu F, Huang Y, Xie X. Personalized news recommendation: Methods and challenges. ACM Trans Inf Syst. 2023;41:1-50. doi: 10.1145/3530257.
 - Su X, Sperlì G, Moscato V, Picariello A, Esposito C, Choi C. An edge intelligence empowered recommender system enabling cultural heritage applications. IEEE Trans Ind Informat. 2019;15:4266-75. doi: 10.1109/TII.2019.2908056.
 - Zhou F, Xu X, Trajcevski G, Zhang K. A survey of information cascade analysis: Models, predictions, and recent advances. ACM Comput Surv. 2022;54:1-36. doi: 10.1145/3433000.
 - Gaillard S, Oláh ZA, Venmans S, Burke M. Countering the cognitive, linguistic, and psychological underpinnings behind susceptibility to fake news: A review of current literature with special focus on the role of age and digital literacy. Front Commun. 2021;6:661801. doi: 10.3389/fcomm.2021. 661801.
 - Della Vedova ML, Tacchini E, Moret S, Ballarin G, DiPierro M, De Alfaro L. Automatic online fake news detection combining content and social signals. 2018 22nd Conference of Open Innovations Association (FRUCT), Jyvaskyla, Finland, 2018, pp. 272-9. doi: 10.23919/FRUCT. 2018.8468301.
 - Tandoc EC Jr, Lim ZW, Ling R. Defining “Fake News”: A typology of scholarly definitions. Digit J. 2018;6:137-53. DOI: 10.1080/21670811.2017.1360143.
 - Park M, Chai S. Constructing a user-centered fake news detection model by using classification algorithms in machine learning techniques. IEEE Access. 2023;11:71517-27. doi: 10.1109/ ACCESS.2023.3294613.
 - Cybenko AK, Cybenko G. AI and fake news. IEEE Intell Syst. 2018;33:1-5. doi: 10.1109/ MIS.2018.2877280.
 - Granik M, Mesyura V. Fake news detection using naive Bayes classifier. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, Ukraine, 2017, pp. 900–903. DOI: 10.1109/UKRCON.2017.8100379.
 - Zhou S, Lin J, Tan L, Liu X. Condensed convolution neural network by attention over self-attention for stance detection in twitter. 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 2019, pp. 1–8. doi: 10.1109/IJCNN.2019.8851965.
 - Taulé M, Martí MA, Rangel F, Rosso P, Bosco C, Patti V. Overview of the task on stance and gender detection in tweets on Catalan independence at IberEval 2017. In: Proceedings of the Second Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2017); 2017. p. 157-177. Available from: https://ceur-ws.org/Vol-1881/Overview5.pdf.
 - Weedon J, Nuland W, Stamos A. Information Operations and Facebook. Version 1.0. Facebook; 2017 Apr 27. Available from: https://i2.res.24o.it/pdf2010/Editrice/ILSOLE24ORE/ILSOLE24 ORE/Online/_Oggetti_Embedded/Documenti/2017/04/28/facebook-and-information-operations-v1.pdf.
 - Wei P, Mao W, Zeng D. A target-guided neural memory model for stance detection in twitter. 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil. 2018. pp. 1–8. DOI: 10.1109/IJCNN.2018.8489665.
 - Helmstetter S, Paulheim H. Weakly supervised learning for fake news detection on Twitter. 018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Barcelona, Spain, 2018. pp. 274-277. DOI: 10.1109/ASONAM.2018.8508520.
 - Mandical RR, Mamatha N, Shivakumar N, Monica R, Krishna AN. Identification of fake news using machine learning. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2020, pp. 1-6, doi: 10.1109/CONECCT50063.2020.9198610.
 - Augenstein I, Rocktäschel T, Vlachos A, Bontcheva K. Stance Detection with Bidirectional Conditional Encoding. [Preprint]. arXiv:1606.05464. 2016 Jun 17. DOI: https://doi.org/10.48550/ arXiv.1606.05464.
 - Ahmad I, Yousaf M, Yousaf S, Ahmad MO. Fake news detection using machine learning ensemble methods. Complexity. 2020;2020:1–11. doi: 10.1155/2020/8885861.
 - Kaur S, Kumar P, Kumaraguru P. Automating fake news detection system using multi-level voting model. Soft Comput. 2020;24:9049-69. doi: 10.1007/s00500-019-04436-y.
 - Ghosh S, Desarkar MS. Class specific TF-IDF boosting for short-text classification: Application to short-texts generated during disasters. Companion Proceedings of the Web Conference 2018; 2018 Apr 23-27; Lyon, France. New York: International World Wide Web Conferences Steering Committee; 2018. p. 1629-37. doi: 10.1145/3184558.3191621.
 - Elfardy H, Diab M. CU-GWU perspective at SemEval-2016 task 6: Ideological stance detection in informal text. In: Bethard S, Carpuat M, Cer D, Jurgens D, Nakov P, Zesch T, editors. Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016); 2016 Jun; San Diego, California. Association for Computational Linguistics; 2016. p. 434–9. doi: 10.18653/v1/S16-1070.
 - Laboreiro G, Sarmento L, Teixeira J, Oliveira E. Tokenizing micro-blogging messages using a text classification approach. In: Proceedings of the Fourth Workshop on Analytics for Noisy Unstructured Text Data; 2010 Jul 11-16; Toronto, ON, Canada. New York: Association for Computing Machinery; 2010. p. 81-8. doi: 10.1145/1871840.1871853.
 - Aldwairi M, Alwahedi A. Detecting fake news in social media networks. Procedia Comput Sci. 2018;141:215–22. doi: 10.1016/j.procs.2018.10.171.
 - Masood AD, Abdulazeez AM, Zeebaree DQ. Machine learning supervised algorithms of gene selection: A review. Mach Learn. 2020;62(3):233–244.
 - Patra BG, Das D, Bandyopadhyay S. JU_NLP at SemEval-2016 Task 6: Detecting stance in tweets using support vector machines. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016); 2016 Jun; San Diego, California. San Diego: Association for Computational Linguistics; 2016. p. 440-444. DOI: 10.18653/v1/S16-1071. Available from: https://aclanthology.org/S16-1071/
 - Buntain C, Golbeck J. Automatically identifying fake news in popular twitter threads. 2017 IEEE International Conference on Smart Cloud (SmartCloud), New York, NY, USA. 2017. pp. 208-215. doi: 10.1109/SmartCloud.2017.40.
 - Dong L, Wesseloo J, Potvin Y, Li X. Discrimination of mine seismic events and blasts using the fisher classifier, Naive Bayesian classifier and logistic regression. Rock Mech Rock Eng. 2016;49:183-211. doi: 10.1007/s00603-015-0733-y.
 - Mohammad S, Kiritchenko S, Sobhani P, Zhu X, Cherry C. SemEval-2016 Task 6: Detecting stance in tweets. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016); 2016 Jun; San Diego, California. San Diego: Association for Computational Linguistics; 2016. p. 31-41. DOI: 10.18653/v1/S16-1003. Available from: https://aclanthology.org/S16-1003/
 - Vereshchaka A, Cosimini S, Dong W. Analyzing and distinguishing fake and real news to mitigate the problem of disinformation. Comput Math Organ Theory. 2020;26:350-64. doi: 10.1007/s10588-020-09307-8.
 - Al-Ghadir AI, Azmi AM, Hussain A. A novel approach to stance detection in social media tweets by fusing ranked lists and sentiments. Inf Fusion. 2021;67:29-40. doi: 10.1016/j.inffus.2020. 10.003.
 - Conroy NK, Rubin VL, Chen Y. Automatic deception detection: Methods for finding fake news. Proc Assoc Inf Sci Technol. 2015;52:1–4. doi: 10.1002/pra2.2015.145052010082.
 - Somasundaran S, Wiebe J. Recognizing stances in ideological on-line debates. In: Inkpen D, Strapparava C, editors. Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text; 2010 Jun 1-2; Los Angeles, CA. Stroudsburg (PA): Association for Computational Linguistics; 2010. p. 116-24. Available from: https://aclanthology.org/W10-0214/
 - Konjengbam A, Ghosh S, Kumar N, Singh M. Debate stance classification using word embeddings. In: Ordonez C, Bellatreche L, editors. Big Data Analytics and Knowledge Discovery. DaWaK 2018. Lecture Notes in Computer Science, vol 11031. Cham: Springer; 2018. p. 377-91. DOI: https://doi.org/10.1007/978-3-319-98539-8_29.
 - Faulkner A. Automated classification of stance in student essays: An approach using stance target information and the Wikipedia link-based measure. In: Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference (FLAIRS 2014); 2014; Palm Beach, Florida. Association for the Advancement of Artificial Intelligence; 2014. p. 174–9.
 - Vlachos A, Riedel S. Identification and verification of simple claims about statistical properties. Rt-PA 2015 Conf Empir Methods Nat Lang Process. Assoc Comput Linguist. p. 2596–601. doi: 10.18653/v1/D15-1312.
 - Harabagiu S, Hickl A, Lacatusu F. Negation, contrast and contradiction in text processing. In: Proceedings of the AAAI Conference on Artificial Intelligence. Boston, MA. Technical Papers. 2006. p. 755-762.
 - Sen A, Sinha M, Mannarswamy S, Roy S. Stance classification of multi-perspective consumer health information. In: Proceedings of the ACM India Joint International Conference on Data Science and Management of Data; 2018; p. 273–81. DOI: 10.1145/3152494.3152518.
 - Silverman C. Lies, damn lies, and viral content. Columbia Journalism Rev. 2015. DOI: 10.7916/D8Q81RHH. Available from: https://www.cjr.org/tow_center_reports/craig_silverman_ lies_damn_lies_viral_content.php
 - Vychegzhanin SV, Kotelnikov EV. Stance detection based on ensembles of classifiers. Program Comput Softw. 2019;45:228–40. doi: 10.1134/S0361768819050074.
 

Current Trends in Information Technology
| Volume | 15 | 
| Issue | 01 | 
| Received | 25/09/2024 | 
| Accepted | 23/12/2024 | 
| Published | 31/12/2024 | 
PlumX Metrics
