A Review of Biotechnology Advancements as Key Drivers of Scientific Innovations

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2025 | Volume : 15 | Issue : 03 | Page : –
    By

    Enochoghene, Adebisi E.,

  • Bamkefa, Bukola A.,

  • Ogungbile, Peter O.,

Abstract

document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_195213’);});Edit Abstract & Keyword

The rising human challenges have necessitated the quest to find lasting solutions to improve living standards. Challenges in food security in terms of quality and quantity, medical and health issues, energy deficiency and limitations in areas of transportation, domestic and industrial needs, as well as environmental issues are some major areas of application of biotechnology to sustain human existence. This review examines major scientific innovations driven by biotechnology. Biotechnology applied to improve microorganisms have provided such innovations as fermented foods, biofuels, antibiotics, enhanced degradation, and drug syntheses. Plant biotechnology has also brought about innovations to achieve food security through biofortification, phytoremediation, pathogen-resistant and tolerant crops, and tissue culture. Animal and aquatic biotechnology have also provided innovations in breeding animals with desired traits ultimately for food and other industrial products to sustain humans. Environmental biotechnology has contributed to bioremediation, biofuel generation, and monitoring of environmental media. Similarly, medical biotechnology has improved human well-being by producing vaccines and drugs to treat or prevent diseases, and correct genetic disorders. This paper gives an overview of current knowledge of biotechnology in driving scientific innovations, which ultimately solves societal challenges and improves human livelihood.

Keywords: Biotechnology, Scientific innovation, Genetic engineering, Biofuels, Medical biotechnology

[This article belongs to Research and Reviews : A Journal of Biotechnology ]

How to cite this article:
Enochoghene, Adebisi E., Bamkefa, Bukola A., Ogungbile, Peter O.. A Review of Biotechnology Advancements as Key Drivers of Scientific Innovations. Research and Reviews : A Journal of Biotechnology. 2025; 15(03):-.
How to cite this URL:
Enochoghene, Adebisi E., Bamkefa, Bukola A., Ogungbile, Peter O.. A Review of Biotechnology Advancements as Key Drivers of Scientific Innovations. Research and Reviews : A Journal of Biotechnology. 2025; 15(03):-. Available from: https://journals.stmjournals.com/rrjobt/article=2025/view=0


document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_195213’);});Edit

References

  1. Akpa A, Ezebuiro NC, Ubi BE, Onyia C, Ibrahim A. Biotechnology development in Nigeria: meeting critical developmental needs. In: Biosafety and Bioethics in Biotechnology. CRC Press; 2022. p. 91-114. http://doi.org/10.1201/9781003179177
  2. Alao MB, Adebayo EA. Current advances in microbial bioremediation of surface and ground water contaminated by hydrocarbon. In: Development in Wastewater Treatment Research and Processes. 2022. p. 89-116. http://doi.org/10.1016/B978-0-323-85839-7.00013-X
  3. Alfonso-Muniozguren P, Serna-Galvis EA, Bussemaker M, Torres-Palma RA, Lee J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason Sonochem. 2021;76:105656. http://doi.org/10.1016/j.ultsonch.2021.105656.
  4. Alyas J, Rafiq A, Amir H, Khan SU, Sultana T, Ali A, et al. Human insulin: history, recent advances, and expression systems for mass production. Biomed Res Ther. 2021;8(9):4540-61. http://doi.org/10.15419/bmrat.v8i9.692
  5. Amer B, Baidoo EE. Omics-driven biotechnology for industrial applications. Front Bioeng Biotechnol. 2021;9:613307. http://doi.org/10.3389/fbioe.2021.613307
  6. Bamigboye OO, Oyawoye OM, Ajediti OB, Olotu TM. Microalgae cultivation and bacteria co-culture for improved biodiesel production: a review. Adeleke Univ J Eng Technol. 2019;2(3):80-6. http://aujet.adelekeuniversity.edu.ng/index.php/aujet/article/view/102
  7. Calvillo Á, Pellicer T, Carnicer M, Planas A. Bioprocess strategies for vitamin B12 production by microbial fermentation and its market applications. Bioengineering. 2022;9(8):365. http://doi.org/10.3390/bioengineering9080365
  8. Costa CM, Cardoso VF, Martins P, Correia DM, Gonçalves R, Costa P, et al. Smart and multifunctional materials based on electroactive poly(vinylidene fluoride): recent advances and opportunities. Chem Rev. 2023;123(19):11392–487. http://doi.org/10.1021/acs.chemrev.3c00196
  9. Devi S. Live cells as biosensors. In: Biomaterials-Based Sensors: Recent Advances and Applications. Singapore: Springer Nature Singapore; 2023. p. 291-322. http://doi.org/10.1007/978-981-19-8501-0_9
  10. Ding W, Zhang Y, Shi S. Development and application of CRISPR/Cas in microbial biotechnology. Front Bioeng Biotechnol. 2020;8:711. http://doi.org/10.3389/fbioe.2020.00711
  11. Fatima G, Magomedova A, Parvez S. Biotechnology and sustainable development. Shineeks Publishers; 2024. https://books.google.com/books?hl=en&lr=&id=7wgCEQAAQBAJ…
  12. Flores A, Wang X, Nielsen DR. Recent trends in integrated bioprocesses: aiding and expanding microbial biofuel/biochemical production. Curr Opin Biotechnol. 2019;57:82-7. http://doi.org/10.1016/j.copbio.2019.02.007
  13. Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes using the CRISPR/Cas9 system: a systematic review. Gene. 2022;833:146595. http://doi.org/10.1016/j.gene.2022.146595
  14. Hallerman EM, Bredlau JP, Camargo LSA, Dagli MLZ, Karembu M, Ngure G, et al. Towards progressive regulatory approaches for agricultural applications of animal biotechnology. Transgenic Res. 2022;31(2):167–99. http://doi.org/10.1007/s11248-021-00294-3
  15. Hamdan MF, Mohd Noor SN, Abd-Aziz N, Pua TL, Tan BC. Green revolution to gene revolution: technological advances in agriculture. Plants. 2022;11(10):1297. http://doi.org/10.3390/plants11101297
  16. Heavey MK, Durmusoglu D, Crook N, Anselmo AC. Discovery and delivery strategies for engineered live biotherapeutic products. Trends Biotechnol. 2022;40(3):354-69. http://doi.org/10.1016/j.tibtech.2021.08.002
  17. Ho D, Quake SR, McCabe ERB, Chng WJ, Chow EK, Ding X, et al. Enabling technologies for personalized and precision medicine. Trends Biotechnol. 2020;38(5):497–518. http://doi.org/10.1016/j.tibtech.2019.12.021
  18. Jacobus AP, Gross J, Evans JH, Ceccato-Antonini SR, Gombert AK. Saccharomyces cerevisiae strains used industrially for bioethanol production. Essays Biochem. 2021;65(2):147-61. http://doi.org/10.1042/EBC20200160
  19. Jin YH, Robledo D, Hickey JM, McGrew MJ, Houston RD. Surrogate broodstock to enhance biotechnology research in aquaculture. Biotechnol Adv. 2021;49:107756. http://doi.org/10.1016/j.biotechadv.2021.107756
  20. Jing J, Garbeva P, Raaijmakers JM, Medema MH. Strategies for tailoring functional microbial synthetic communities. ISME J. 2024;wrae049. http://doi.org/10.1093/ismejo/wrae049
  21. Jones MG, Fosu-Nyarko J, Iqbal S, Adeel M, Romero-Aldemita R, Arujanan M, et al. Enabling trade in gene-edited produce in Asia and Australasia: the regulatory landscape. Plants. 2022;11(19):2538. http://doi.org/10.3390/plants11192538
  22. Kathiravan A, Gnanadoss JJ. White-rot fungi-mediated bioremediation for xenobiotic degradation. Environ Exp Biol. 2021;19(3):103-19. http://doi.org/10.22364/eeb.19.11
  23. Kim K, Kang M, Cho SH, Yoo E, Kim UG, Cho S, et al. Minireview: Engineering evolution for phenotypic traits in microbes. Comput Struct Biotechnol J. 2023;21:563-73. http://doi.org/10.1016/j.csbj.2022.12.042
  24. Kim KO, Gluck M. Fecal microbiota transplantation: an update on clinical practice. Clin Endosc. 2019;52(2):137-43. http://doi.org/10.5946/ce.2019.009
  25. Labh SN. Applications of biotechnology in aquaculture and fisheries. In: Frontiers in Aquaculture Biotechnology. Academic Press; 2023. p. 163-70. http://doi.org/10.1016/B978-0-323-91240-2.00007-5
  26. Leifels M, Cheng D, Sozzi E, Shoults DC, Wuertz S, Mongkolsuk S, et al. Capsid integrity qPCR to determine virus infectivity. Water Res X. 2020;11:100080. http://doi.org/10.1016/j.wroa.2020.100080
  27. Likhanov M, Zakharov I, Awofala A, Ogundele O, Selita F, Kovas Y, et al. Attitudes towards genetic testing: genetic literacy and cognition. PLoS One. 2023;18(11):e0293187. http://doi.org/10.1371/journal.pone.0293187
  28. Ma QP. Biotechnology: trends and business implications. In: Research Anthology on Bioinformatics, Genomics, and Computational Biology. 2024. p. 335-55. http://doi.org/10.4018/979-8-3693-3026-5.ch016
  29. Ma Y, Zhang Z, Jia B, Yuan Y. Automated high-throughput DNA synthesis and assembly. Heliyon. 2024;10(6):e26967. http://doi.org/10.1016/j.heliyon.2024.e26967
  30. Mohammad ZH, Ahmad F, Ibrahim SA. Biotechnology approaches to food security. In: Microbial Biotechnology in the Food Industry. Cham: Springer; 2024. p. 1-13. http://doi.org/10.1007/978-3-031-51417-3_1
  31. Munaweera TIK, Jayawardana NU, Rajaratnam R, Dissanayake N. Modern plant biotechnology to address climate change and food security. Agric Food Secur. 2022;11(1):1-28. http://doi.org/10.1186/s40066-022-00369-2
  32. Murtaza G, Ahmed Z, Valipour M, Ali I, Usman M, Iqbal R, et al. Modified/functionalized biochars for environmental remediation: recent trends and economic significance. Sci Rep. 2024;14(1):217. http://doi.org/10.1038/s41598-024-56882-w
  33. Narayanan M, Ali SS, El-Sheekh M. Microbial enzymes in multipollutant bioremediation: mechanisms and challenges. J Environ Manag. 2023;334:117532. http://doi.org/10.1016/j.jenvman.2023.117532
  34. Osazuwa C, Olaniyi OO, Akinyele BJ, Akinyosoye FA. Poultry meat preservation using citric acid from wheat straw fermentation. Rev Fac Nac Agron Medellín. 2024;77(2):10729-41. http://doi.org/10.15446/rfnam.v77n2.105711
  35. Priya TJ, Kappalli S. Biotechnological strategies for vaccine development in aquaculture. Vaccine. 2022;40(41):5873-81. http://doi.org/10.1016/j.vaccine.2022.08.075
  36. Rangel AE, Gómez Ramírez JM, Gonzalez Barrios AF. Microbial cell factories from industrial by-products: metabolic engineering and bioprocess integration. Biofuels Bioprod Biorefin. 2020;14(6):1228-37. http://doi.org/10.1002/bbb.2127
  37. Sahoo A, Das PK, Dasu VV, Patra S. Insulin evolution: recombinant production advancements. Int J Biol Macromol. 2024;133951. http://doi.org/10.1016/j.ijbiomac.2024.133951
  38. Shahzad R, Jamil S, Ahmad S, Nisar A, Khan S, Amina Z, et al. Biofortification of cereals and pulses using new breeding techniques. Front Nutr. 2021;8:721728. http://doi.org/10.3389/fnut.2021.721728
  39. Sharma P, Doultani S, Hadiya KK, George LB, Highland HN. Overview of marker-assisted selection in animal breeding. J Adv Biol Biotechnol. 2024;27(5):303-18. http://doi.org/10.9734/jabb/2024/v27i5790
  40. Sivamani Y, Hegde S, Bhat AR, Sajal H, Elayaperumal S. Recombinant DNA technology and gene therapy. In: Biochemical and Molecular Pharmacology in Drug Discovery. Elsevier; 2024. p. 353-76. http://doi.org/10.1016/B978-0-443-16013-4.00017-8
  41. Song YJ, Zhao NL, Dai DR, Bao R. Prospects of Pseudomonas in microbial fuel, bioremediation, and sustainability. ChemSusChem. 2024;e202401324. http://doi.org/10.1002/cssc.202401324
  42. Szczepankowska J, Khachatryan G, Khachatryan K, Krystyjan M. Carbon dots: types, synthesis, and applications in biotech and food tech. Int J Mol Sci. 2023;24(19):14984. http://doi.org/10.3390/ijms241914984
  43. Verma J, Goel S. Bioresources for sustainable transportation: state-of-the-art. Int J Hydrogen Energy. 2023;48(10):3768-90. http://doi.org/10.1016/j.ijhydene.2022.10.206
  44. Wäneskog M, Rasmussen TB, Jensen ED. Dual-species protein expression in bacterial and yeast cell factories. Biotechnol Prog. 2024;e3482. http://doi.org/10.1002/btpr.3482
  45. Wu Y, Rashidpour A, Almajano MP, Metón I. Chitosan-based drug delivery in fish biotechnology. Polymers. 2020;12(5):1177. http://doi.org/10.3390/polym12051177
  46. Xia PF, Ling H, Foo JL, Chang MW. Synthetic genetic circuits for programmable biological functions. Biotechnol Adv. 2019;37(6):107393. http://doi.org/10.1016/j.biotechadv.2019.04.015
  47. Xiao P, Wu D, Wang J. White rot fungi biotechnology: bibliometric analysis for environmental applications. Environ Sci Pollut Res. 2022;29:1491-507. http://doi.org/10.1007/s11356-021-15787-1
  48. Xuan Y, Wang C, Ghatak S, Sen CK. Tissue nanotransfection silicon chip for in vivo reprogramming. Nanomaterials. 2024;14(2):217. http://doi.org/10.3390/nano14020217
  49. Yang Q, Zhang AH, Miao JH, Sun H, Han Y, Yan GL, et al. Metabolomics biotechnology: applications and future trends. RSC Adv. 2019;9(64):37245-57. http://doi.org/10.1039/C9RA06697G
  50. Zhao L, Zhu Y, Jia H, Han Y, Zheng X, Wang M, et al. Advances in artemisinin biosynthesis from plant to yeast. Molecules. 2022;27(20):6888. http://doi.org/10.3390/molecules27206888

Regular Issue Subscription Review Article
Volume 15
Issue 03
Received 07/05/2025
Accepted 25/06/2025
Published 01/07/2025
Publication Time 55 Days

[last_name]

My IP

PlumX Metrics