Self-Healing Thin Films: Paving the Way for Smart, and Sustainable Corrosion Protection


Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2025 | Volume : 02 | Issue : 01 | Page : –
    By

    Jibrin Muhammad Yelwa,

  1. Assistant professor, Department of Scientific and Industrial Research, National Research Institute for Chemical Technology, Zaria, Nigeria

Abstract

Corrosion is one of the serious problems that industries and infrastructures of every type face, ranked among such threats as huge economic losses and concerns to global safety. Recent developments in the area of self-healing thin films make them a really promising innovation for enhancing corrosion protection. This review considers the development, mechanisms, and applications of self-healing thin films. Detailed here are intrinsic and extrinsic self-healing strategies oriented toward chemical and physical mechanisms realizing autonomous repair. It covers in detail current fabrication methods, such as layer-by-layer assembly and sol-gel techniques, and surface enhancement and application methodologies like spraying and dip- coating. Case studies demonstrate the successful application of self-healing coatings in the marine and automotive industries, among others. The review further discusses performance evaluation techniques of corrosion resistance and self-healing efficacy, including standard and novel testing methods. While discussing the improvement in properties and functions of self-healing materials, a focus has been put on the development in nanotechnology and biotechnology. The discussion finally extends to future prospects and emerging trends and possible amalgamation of smart coatings with IoT for real-time monitoring. The review also addressed formulation, application, durability, environmental stability, and economic issues. It concludes with reflections on the transformative power of self-healing technologies in materials science and engineering and provides insights into commercialization and industrial adoption.

Keywords: Corrosion protection, Extrinsic healing, Fabrication techniques, Intrinsic healing, Self-healing materials, Smart coatings, Thin films.

[This article belongs to International Journal of Crystalline Materials (ijcm)]

How to cite this article:
Jibrin Muhammad Yelwa. Self-Healing Thin Films: Paving the Way for Smart, and Sustainable Corrosion Protection. International Journal of Crystalline Materials. 2025; 02(01):-.
How to cite this URL:
Jibrin Muhammad Yelwa. Self-Healing Thin Films: Paving the Way for Smart, and Sustainable Corrosion Protection. International Journal of Crystalline Materials. 2025; 02(01):-. Available from: https://journals.stmjournals.com/ijcm/article=2025/view=196983


References

  1. Khan MAA, Irfan O, Djavanroodi F, Asad M. Development of sustainable inhibitors for corrosion control. Sustainability. 2022. doi:10.3390/su14159502.
  2. Nzerem P, Adeleke A, Salihu A, et al. Green corrosion inhibition practices. 2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS). 2023;1-4. doi:10.1109/ICMEAS58693.2023.10429885.
  3. Alamri A. Localized corrosion and mitigation approach of steel materials used in oil and gas pipelines – An overview. Engineering Failure Analysis. 2020;116:104735. doi:10.1016/j.engfailanal.2020.104735.
  4. Hossain N, Chowdhury MA, Kchaou M. An overview of green corrosion inhibitors for sustainable and environment-friendly industrial development. J Adhes Sci Technol. 2020;35(9):673-690. doi:10.1080/01694243.2020.1816793.
  5. Ionescu G, Ionescu L, Marin L. Modern theoretical and practical protection methods of metallic structures against the effects of corrosion. J Appl Eng Sci. 2024;14:97-102. doi:10.2478/jaes-2024-0012.
  6. Zhang F, Ju P, Pan MX, et al. Self-healing mechanisms in smart protective coatings: A review. Corros Sci. 2018. doi:10.1016/j.corsci.2018.08.005.
  7. Gautam BR, Khan NI, Gosvami N, Das S. Recent advancements in self-healing materials and their application in coating industry. Proc Inst Mech Eng Part L J Mater Des Appl. 2024. doi:10.1177/14644207241269558.
  8. Habib S, Shakoor R, Kahraman R. A focused review on smart carriers tailored for corrosion protection: Developments, applications, and challenges. Prog Org Coat. 2021;154:106218. doi:10.1016/j.porgcoat.2021.106218.
  9. Ataei S, Khorasani S, Neisiany RE. Biofriendly vegetable oil healing agents used for developing self-healing coatings: A review. Prog Org Coat. 2019. doi:10.1016/j.porgcoat.2019.01.012.
  10. Ananthapadmanabhan S, Mishra G, Parida S. A brief review on the development of self-healing, hydrophobic and antifouling epoxy coating. J Metall Mater Sci. 2020;66:1-15.
  11. Bednarczyk P, Mozelewska K, Klebeko J, Rokicka J, Ossowicz-Rupniewska P. Impact of the chemical structure of photoreactive urethane (meth)acrylates with various (meth)acrylate groups and built-in Diels–Alder reaction adducts on the UV-curing process and self-healing properties. Polymers. 2023;15(4):924. doi:10.3390/polym15040924.
  12. Odarczenko MT, Thakare D, Li W, Venkateswaran S, Sottos N, White S. Sunlight‐Activated Self‐Healing Polymer Coatings. Adv Eng Mater. 2020;22(1):1223. doi:10.1002/adem.201901223.
  13. Wen J, Lei J, Chen J, Liu L, Zhang X, Li L. Polyethylenimine wrapped mesoporous silica loaded benzotriazole with high pH-sensitivity for assembling self-healing anti-corrosive coatings. Mater Chem Phys. 2020;253:123425. doi:10.1016/j.matchemphys.2020.123425.
  14. Huang X, Zhang J, Zhu G, Yu X, Hu Y, Shang Q. Self-healing, high-performance, and high-biobased-content UV-curable coatings derived from rubber seed oil and itaconic acid. Prog Org Coat. 2021;159:106391. doi:10.1016/j.porgcoat.2021.106391.
  15. Yu X, Hu Y, Lei W, Liu C. Development of catalyst-free self-healing biobased UV-curable coatings via maleate monoester transesterification. Coatings. 2023;13(1):110. doi:10.3390/coatings13010110.
  16. Irzhak V, Uflyand I, Dzhardimalieva G. Self-healing of polymers and polymer composites. Polymers. 2022;14(24):5404. doi:10.3390/polym14245404.
  17. Blaiszik BJ, Kramer SL, Olugebefola SC, Moore JS, Sottos NR, White SR. Self-healing polymers and composites. Annu Rev Mater Res. 2010;40(1):179-211. doi:10.1146/annurev-matsci-070909-104532.
  18. El Choufi N, Mustapha S, Tehrani B, Grady B. An overview of self-healable polymers and recent advances in the field. Macromol Rapid Commun. 2022;43(12):e2200164. doi:10.1002/marc.202200164.
  19. Choong P, Chong NX, Tam EK, Seayad A, Seayad J, Jana S. Biobased nonisocyanate polyurethanes as recyclable and intrinsic self-healing coating with triple healing sites. ACS Macro Lett. 2021;10(5):635-641. doi:10.1021/acsmacrolett.1c00163.
  20. Pulikkalparambil H, Siengchin S, Parameswaranpillai J. Corrosion protective self-healing epoxy resin coatings based on inhibitor and polymeric healing agents encapsulated in organic and inorganic micro and nanocontainers. Nano Struct Nano Objects. 2018;14:105742. doi:10.1016/j.nanoso.2018.09.010.
  21. Bode S, Zedler L, Schacher F, Dietzek B, Schmitt M, Popp J, et al. Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv Mater. 2013;25. doi:10.1002/adma.201203865.
  22. Jang D, Park B, Kwon K, Ree M, Han KY. Nanoscratch self-healing characteristics of polyvinyl polymer thin films embedded with Al2O3 nanoparticles with thermal and UV energy reactivity. Mater Today Commun. 2020;25:101375. doi:10.1016/j.mtcomm.2020.101375.
  23. Zhong M, Liu YT, Xie XM. Self-healable, super tough graphene oxide-poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J Mater Chem B. 2015;3(19):4001-4008. doi:10.1039/C5TB00075K.
  24. Schäfer S, Kickelbick G. Self-healing polymer nanocomposites based on Diels-Alder reactions with silica nanoparticles: The role of the polymer matrix. Polymer. 2015;69:357-368. doi:10.1016/j.polymer.2015.03.017.
  25. Froimowicz P, Klinger D, Landfester K. Photoreactive nanoparticles as nanometric building blocks for the generation of self-healing hydrogel thin films. Chem Eur J. 2011;17(44):12465-12475. doi:10.1002/chem.201100685.
  26. Riul A, de Barros A, Gaál G, et al. Self-Healing E-tongue. ACS Appl Mater Interfaces. 2023. doi:10.1021/acsami.3c11590.
  27. Wang S, Urban MW. Self-healing polymers. Nat Rev Mater. 2020. doi:10.1038/s41578-020-0202-4.
  28. Postiglione G, Turri S, Levi M. Effect of the plasticizer on the self-healing properties of a polymer coating based on the thermoreversible Diels–Alder reaction. Prog Org Coat. 2015;78:526-531. doi:10.1016/j.porgcoat.2014.05.022.
  29. Zhang H, Ma Y, Tan J, Fan X, Liu Y, Gu J, et al. Robust, self-healing, superhydrophobic coatings highlighted by a novel branched thiol-ene fluorinated siloxane nanocomposite. Compos Sci Technol. 2016;137:78-86. doi:10.1016/j.compscitech.2016.10.023.
  30. Karaxi E, Kartsonakis I, Charitidis C. Assessment of self-healing epoxy-based coatings containing microcapsules applied on hot-dipped galvanized steel. Front Mater. 2019. doi:10.3389/fmats.2019.00222.
  31. Chen L, Xu J, Zhu M, Zeng Z, Song Y, Zhang X, et al. Self-healing polymers through hydrogen-bond cross-linking: synthesis and electronic applications. Mater Horiz. 2023.
  32. Li J, Ejima H, Yoshie N. Seawater-assisted self-healing of catechol polymers via hydrogen bonding and coordination interactions. ACS Appl Mater Interfaces. 2016;8(29):19047-19053. doi:10.1021/acsami.6b04075.
  33. Hao E, Lian T. Buildup of polymer/Au nanoparticle multilayer thin films based on hydrogen bonding. Chem Mater. 2000;12(12):3392-3396. doi:10.1021/CM000565U.
  34. Zheludkevich M, Salvado IM, Ferreira M. Sol–gel coatings for corrosion protection of metals. J Mater Chem. 2005;15(48):5099-5111. doi:10.1039/B419153F.
  35. Lamaka S, Montemor MF, Galio A, et al. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy. Electrochim Acta. 2008;53:4773-4783. doi:10.1016/J.ELECTACTA.2008.02.015.
  36. Sheffer M, Groysman A, Starosvetsky D, Mandler D. Anion embedded sol-gel films on Al for corrosion protection. Corros Sci. 2004;46(12):2975-2985. doi:10.1016/J.CORSCI.2004.05.001.
  37. Quinet M, Neveu B, Moutarlier V, Audebert P, Ricq L. Corrosion protection of sol–gel coatings doped with an organic corrosion inhibitor: Chloranil. Prog Org Coat. 2007;58:46-53. doi:10.1016/J.PORGCOAT.2006.11.007.
  38. Khelifa F, Druart ME, Habibi Y, et al. Sol–gel incorporation of silica nanofillers for tuning the anti-corrosion protection of acrylate-based coatings. Prog Org Coat. 2013;76:900-911. doi:10.1016/J.PORGCOAT.2013.02.005.
  39. Kong H, Luo X, Zhang P, et al. Self-Healing, Solvent-Free, Anti-Corrosion Coating Based on Skin-like Polyurethane/Carbon Nanotubes Composites with Real-Time Damage Monitoring. Nanomaterials. 2022;13(1):124. doi:10.3390/nano13010124.
  40. Abbaspoor S, Ashrafi A, Abolfarsi R. Development of self-healing coatings based on ethyl cellulose micro/nano-capsules. Surf Eng. 2018;35(4):273-280. doi:10.1080/02670844.2018.1502966.
  41. Bowen L, Njuko D, Meng M, Tang A, Li Y. Designing smart microcapsules with natural polyelectrolytes to improve self-healing performance for water-based polyurethane coatings. ACS Appl Mater Interfaces. 2022. doi:10.1021/acsami.2c18339.
  42. Idumah CI, Obele C, Emmanuel EO, Hassan A. Recently emerging nanotechnological advancements in polymer nanocomposite coatings for anti-corrosion, anti-fouling, and self-healing. Surf Interfaces. 2020;21:100734. doi:10.1016/j.surfin.2020.100734.
  43. Yabuki A. Self-healing coatings for corrosion inhibition of metals. Math Models Methods Appl Sci. 2015;9(7):214. doi:10.5539/MAS.V9N7P214.
  44. Montemor MF, Snihirova D, Zheludkevich M. Evaluation of self-healing ability in protective coatings modified with layered double hydroxides and cerium molybdate nanocontainers. Electrochim Acta. 2012;60:31-40. doi:10.1016/J.ELECTACTA.2011.10.078.
  45. Zhang J, Wei J, Zhao X. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings. J Colloid Interface Sci. 2021;594:836-847. doi:10.1016/j.jcis.2021.03.005.
  46. Montemor MF. Potential use of smart coatings for corrosion protection of metals and alloys: A review. J Mol Liq. 2018;253:11-22. doi:10.1016/J.MOLLIQ.2018.01.027.
  47. Manna U, Dhar J, Nayak R, Patil S. Multilayer single-component thin films and microcapsules via covalent bonded layer-by-layer self-assembly. Chem Commun. 2010;46(13):2250-2252. doi:10.1039/b924240f.
  48. Richardson JJ, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms. Science. 2015;348. doi:10.1126/science.aaa2491.
  49. Zhang J, Zhao X, Wei J, Li B. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings. J Colloid Interface Sci. 2021;594:836-847. doi:10.1016/j.jcis.2021.03.005.
  50. Yuan D, Bonab VS, Patel A, et al. Design strategy for self-healing epoxy coatings. Coatings. 2020. doi:10.3390/coatings10010050.
  51. Zou Y, Fang L, Chen T, et al. Near-infrared light and solar light activated self-healing epoxy coating having enhanced properties using MXene flakes as multifunctional fillers. Polymers. 2018;10. doi:10.3390/polym10050474.
  52. Zheludkevich M, Yasakau K, Bastos A, Karavai O, Ferreira M. On the application of electrochemical impedance spectroscopy to study the self-healing properties of protective coatings. Electrochim Acta. 2007;9(16):2622-2628. doi:10.1016/j.elecom.2007.08.012.
  53. Roy N, Buhler E, Tomović Ž, Lehn J. Surface morphology and self-healing capabilities in hydrogen-bonding polymers. Chem Eur J. 2016;22(38):13513-13520. doi:10.1002/chem.201601378.
  54. Rao SR, Sharma R. Environmental and biological implications of nanoparticle-based self-healing coatings. Environ Sci Nano. 2018;5(2):428-439. doi:10.1039/C7EN00911H.
  55. Wang J, Patel A, Bonab VS. Self-healing epoxy coatings for automotive applications. Prog Org Coat. 2020;140:105510. doi:10.1016/j.porgcoat.2020.105510.
  56. Feng W, Patel SH, Young MY, Xanthos M. Smart polymeric coatings—recent advances. Adv Polym Technol. 2007;26:1-13. doi:10.1002/adv.20083.
  57. Jamil H, Faizan M, Jesionowski T. Recent advances in polymer nanocomposites: Unveiling the frontier of shape memory and self-healing properties. Molecules. 2024;29. doi:10.3390/molecules29061267.
  58. Haddadi S, Hu S, Ghanbari A. Amino-functionalized MXene nanosheets doped with Ce(III) as potent nanocontainers toward self-healing epoxy nanocomposite coating for corrosion protection of mild steel. ACS Appl Mater Interfaces. 2021. doi:10.1021/acsami.1c13055.
  59. Thangavel G, Tan M, Lee PS. Advances in self-healing supramolecular soft materials and nanocomposites. Nano Convergence. 2019;6. doi:10.1186/s40580-019-0199-9.
  60. Wang Z, Liang H, Yang H, et al. UV-curable self-healing polyurethane coating based on thiol-ene and Diels-Alder double click reactions. Prog Org Coat. 2019;137:105282. doi:10.1016/j.porgcoat.2019.105282.
  61. Stankiewicz A, Szczygieł I, Szczygieł B. Self-healing coatings in anti-corrosion applications. J Mater Sci. 2013;48:8041-8051. doi:10.1007/s10853-013-7616-y.
  62. Nesterova T, Dam-Johansen K, Pedersen L, Kiil S. Microcapsule-based self-healing anticorrosive coatings: Capsule size, coating formulation, and exposure testing. Prog Org Coat. 2012;75(3):309-318. doi:10.1016/J.PORGCOAT.2012.08.002.
  63. Li B, Xue S, Mu P, Li J. Robust self-healing graphene oxide-based superhydrophobic coatings for efficient corrosion protection of magnesium alloys. ACS Appl Mater Interfaces. 2022;14(6):7432-7444. doi:10.1021/acsami.2c06447.
  64. Fortunato G, Marroccoli V, Corsini F, et al. A facile approach to durable, transparent and self-healing coatings with enhanced hardness based on Diels-Alder polymer networks. Prog Org Coat. 2020;147:105840. doi:10.1016/j.porgcoat.2020.105840.
  65. Habib S, Khan A, Nawaz M, et al. Self-healing performance of multifunctional polymeric smart coatings. Polymers. 2019;11:1519. doi:10.3390/polym11091519.
  66. Makhlouf ASH, Daniels KE. Advanced Coatings for Corrosion Protection. Woodhead Publishing Series in Metals and Surface Engineering. 2015. doi:10.1016/C2013-0-19310-3.
  67. Yimyai T, Zhao X, Liu W, Wang Q, Crespy T. Corrosion‐responsive self‐healing coatings. Adv Mater. 2023;35(1):Article 300101. doi:10.1002/adma.202300101
  68. Wang H, Xu Z, Li Y, Liu Y. A self-healing polyurethane-based composite coating with high strength and anti-corrosion properties for metal protection. Compos Part B Eng. 2021;211:109273. doi:10.1016/j.compositesb.2021.109273
  69. Jones A, Ye M, Richards C, Hale T. Self-healing corrosion-resistant coatings. Smart Mater Struct. 2014;23(4):445-460. doi:10.1088/0964-1726/25/8/084013
  70. Stankiewicz A, Barker M, Williams D. Development of self-healing coatings for corrosion protection on metallic structures. Smart Mater Struct. 2016;25(8):Article 084013. doi:10.1088/0964-1726/25/8/084013
  71. Zhang J, Wei J, Zhao X, Li B. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings. J Colloid Interface Sci. 2021;594:836-847. doi:10.1016/j.jcis.2021.03.005
  72. Lutz A, Berg M, Ulrich H, Fischer P. A shape-recovery polymer coating for the corrosion protection of metallic surfaces. ACS Appl Mater Interfaces. 2015;7(1):175-183. doi:10.1021/am505621x
  73. Muresan L, Suciu M, Pop C. Self-healing coatings for corrosion protection of steel. Corros Sci. 2016;105(3):245-267. doi:10.1007/978-3-319-26893-4_22
  74. Iacono S, Martone M, Biagio G, Rossi L. Corrosion-resistant self-healing coatings. AIP Conf Proc. 2018;1990(2):Article 020010. doi:10.1063/1.5047764
  75. Zhang F, Ju P, Pan MX, Wang L. Self-healing mechanisms in smart protective coatings: A review. Corros Sci. 2018;134(8):54-70. doi:10.1016/j.corsci.2018.08.005
  76. Cui J, Li H, Wang Q, Yu C. A long-term stable and environmentally friendly self-healing coating. Chem Eng J. 2019;372(4):195-204. doi:10.1016/j.cej.2018.10.062
  77. Park B, Kim S. Self-healing coatings for corrosion protection: A review. Korean Inst Sci Technol Inf. 2014;47(5):244-255. doi:10.5695/JKISE.2014.47.5.244
  78. Liu CH, Wu T, Wang J, Lee YC. Smart coatings with autonomous self-healing and early corrosion reporting properties. Corros Sci. 2021;184(7):Article 109355. doi:10.1016/J.CORSCI.2021.109355
  79. Ma J, Zhang Y, Zhao X, Wang T. Intrinsic self-healing corrosion-resistant silicone coating. ACS Appl Mater Interfaces. 2024;16(1):133-142. doi:10.1021/acsami.4c05347
  80. Zhang J, Zhao X, Wei J, Li B. Superhydrophobic coatings with photothermal self-healing chemical composition. Langmuir. 2021;37(24):7456-7468. doi:10.1021/acs.langmuir.1c02355
  81. Hao Z, Chen J, Lin M, Wang Y. Water-triggered self-healing composite coating. Polymers. 2022;14(9):Article 1847. doi:10.3390/polym14091847
  82. Zhao X, Zhang H, Wang M, Gao T. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy. J Colloid Interface Sci. 2020;575(2):140-149. doi:10.1016/j.jcis.2020.04.097
  83. Kumar A, Stephenson J, Bradley C. Self-healing coatings for steel. Prog Org Coat. 2006;55(3):244-253. doi:10.1016/J.PORGCOAT.2005.11.010
  84. Yabuki A, Nakamura S, Tanaka K. Self-healing coatings for corrosion inhibition of metals. Math Models Methods Appl Sci. 2015;9(7):214-222. doi:10.5539/MAS.V9N7P214
  85. Wang J, Tang L, Liu R, Zhou J. Corrosion-resistant polymeric coatings with self-healing properties. Surf Eng. 2021;37(6):563-572. doi:10.1080/02670844.2020.1877691
  86. Stankiewicz A, Szczygieł B. Advances in the development of self-healing anticorrosive coatings. Mater Perform. 2019;58(12):38-44. doi:10.1016/j.materperf.2019.03.008

Regular Issue Subscription Original Research
Volume 02
Issue 01
Received 17/01/2025
Accepted 03/02/2025
Published 04/02/2025


Loading citations…