Role of biosynthesized Copper nanoparticles in Agriculture and other fields

Year : 2024 | Volume :14 | Issue : 02 | Page : 39-53
By

Geeta Rautela,

Rose Rizvi,

  1. Research scholar, Department of Botany, Aligarh Muslim University, Uttar pradesh, India
  2. Assistant Professor, Department of Botany, Aligarh Muslim University, Uttar Pradesh, India

Abstract

‘]

In the last decades, nanotechnology has emerged as a new field of technology because of its unique  qualities. The use of chemicals in medicines and agriculture such as fertilizers, pesticides, herbicides, and insecticides are very harmful to the environment so by the use of this revolutionary technology we  can reduce the toxic effects on the environment. However, a biological method is very easy, simple, and  free from any chemical hazards, and very eco-friendly biological entities like bacteria, fungi, algae, and plants are used in the biological synthesis of CuNPs. Different plant parts such as roots, stems,  fruit, flowers, and leaves are used in the biosynthesis of NPs. CuNPs exhibited positive effects at lower concentrations but at higher concentrations exhibited toxic effects in the environment. In agriculture, CuNPs protect plants from abiotic and biotic stress conditions. CuNPs reduce the plant pathogens’ growth by the generation of oxidative stress. CuNPs enhanced the plant growth and yield but at the  same at higher concentrations created phytotoxicity in plants. Additionally, CuNPs taken by the plant  tissue accumulated in plants which is a serious issue for human beings. Most advanced application of  biosynthesized CuNPs management of plant diseases. CuNPs can be used as nano-fungicides,  nematicides, and pesticides to increase agriculture production. In this paper, we focus on the biosynthesis, and positive and negative impacts of CuNPs and also provide knowledge and importance  of the CuNPs in various fields like medicine and agriculture, in medicine act as anticancer and anti diabetic agents. 

Keywords: Copper nanoparticle,Agriculture, Insecticides, Environment. Nanotechnology

[This article belongs to Journal of Nanoscience, NanoEngineering & Applications (jonsnea)]

How to cite this article:
Geeta Rautela, Rose Rizvi. Role of biosynthesized Copper nanoparticles in Agriculture and other fields. Journal of Nanoscience, NanoEngineering & Applications. 2024; 14(02):39-53.
How to cite this URL:
Geeta Rautela, Rose Rizvi. Role of biosynthesized Copper nanoparticles in Agriculture and other fields. Journal of Nanoscience, NanoEngineering & Applications. 2024; 14(02):39-53. Available from: https://journals.stmjournals.com/jonsnea/article=2024/view=174813



Fetching IP address…

Full Text PDF

References ‘]

  1. Keller AA, Lazareva A. Predicted releases of engineered nanomaterials: From global to regional to local. Environ Sci Technol Lett. 2014;1:65–70. DOI: 10.1021/ez400106t.
  2. Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2:3. DOI: 10.1186/1477-3155-2-3, PubMed: 15119954.
  3. Servin AD, De la Torre-Roche R, Castillo-Michel H, Pagano L, Hawthorne J, Musante C, et al. Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiol Biochem. 2017;110:147–57. DOI: 10.1016/j.plaphy.2016.06.003, PubMed: 27288265.
  4. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46:2242–50. DOI: 10.1021/es204168
    d, PubMed: 22260395.
  5. Yadav T, Mungray AA, Mungray AK. Fabricated nanoparticles: Current status and potential phytotoxic threats. Rev Environ Contam Toxicol. 2014;230:83–110. DOI: 10.1007/978-3-319-04411-8_4, PubMed: 24609519.
  6. Wu PC, Chen HH, Chen SY, Wang WL, Yang KL, Huang CH, et al. Graphene oxide conjugated with polymers: A study of culture condition to determine whether a bacterial growth stimulant or an antimicrobial agent? J Nanobiotechnology. 2018;16:1. DOI: 10.1186/s12951-017-0328-8, PubMed: 29321058.
  7. Mu Q, Yu J, McConnachie LA, Kraft JC, Gao Y, Gulati GK, et al. Translation of combination nanodrugs into nanomedicines: Lessons learned and future outlook. J Drug Target. 2018;26:435–47. DOI: 10.1080/1061186X.2017.1419363, PubMed: 29285948.
  8. Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, et al. Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. J Environ Manage. 2016;184:157–69. DOI: 10.1016/j.jenvman.2016.09.071, PubMed: 27697374.
  9. DeForest DK, Gensemer RW, Gorsuch JW, Meyer JS, Santore RC, Shephard BK, et al. Effects of copper on olfactory, behavioral, and other sublethal responses of saltwater organisms: Are estimated chronic limits using the biotic ligand model protective? Environ Toxicol Chem. 2018;37:1515–22. DOI: 10.1002/etc.4112, PubMed: 29442368.
  10. Bulcke F, Dringen R, Scheiber IF. Neurotoxicity of copper. Adv Neurobiol. 2017;18:313–43. DOI: 10.1007/978-3-319-60189-2_16, PubMed: 28889275.
  11. Litwin T, Schneider SA, Flaten TP, Aaseth J. The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases D usek, P. J Trace Elem Med Biol. 2015;31:193–203.
  12. Filipič G, Cvelbar U. Copper oxide nanowires: A review of growth. Nanotechnology. 2012;23ID 194001. DOI: 10.1088/0957-4484/23/19/194001, PubMed: 22538410.
  13. Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P. Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci. 2016;7:1288. DOI: 10.3389/fpls.2016.
    01288, PubMed: 27617020.
  14. Shalaby TA, Bayoumi Y, Abdalla N, Taha H, Alshaal T, Shehata S, et al. Nanoparticles, soils, plants and sustainable agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E, editors. Nanoscience in Food and Agriculture 1, Sustainable Agriculture Reviews, Vol. 20. Berlin: Springer; 2016. p. 283–312. DOI: 10.1007/978-3-319-39303-2_10.
  15. Zhang J, Feng H, Qin Q, Zhang G, Cui Y, Chai Z, et al. Interior design of three-dimensional CuO ordered architectures with enhanced performance for supercapacitors. J Mater Chem A. 2016;4:6357–67. DOI: 10.1039/C6TA00397D.
  16. Qing T, Zhang K, Qing Z, Wang X, Long C, Zhang P, et al. Recent progress in copper nanocluster-based fluorescent probing: A review. Mikrochim Acta. 2019;186:670. DOI: 10.1007/s00604-019-3747-4, PubMed: 31489488.
  17. Dubey A, Mailapalli DR. Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Lichtfouse E, editor. Sustainable Agriculture Reviews, Vol. 19. Switzerland: Springer; 2016. p. 307–30. DOI: 10.1007/978-3-319-26777-7_7.
  18. Passam HC, Karapanos IC, Bebeli PJ, Dimitrios S. A review of Recent Research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality, the European. J Plant Sci Biotechnol. 2007;1:1–21.
  19. Mengel K, Kirkby EA, Kosegarten H, Appel T. Zinc. In: Principles of Plant Nutrition. Dordrecht: Springer; 2001. p. 585–97.
  20. Abou El-Nour KMM, Eftaiha AA, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3:135–40. DOI: 10.1016/j.arabjc.2010.04.008.
  21. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine. 2010;6:257–62. DOI: 10.1016/j.nano.2009.07.002, PubMed: 19616126.
  22. Lanje AS, Sharma SJ, Pode RB, Ningthoujam RS. Synthesis and optical characterization of copper oxide nanoparticles. Adv Appl Sci Res. 2010;1:36–40.
  23. El-Batal AI, El-Sayyad GS, El-Ghamery A, Gobara M. Response surface methodology optimization of melanin production by Streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. J Clust Sci. 2017;28:1083–112. DOI: 10.1007/s10876-016-1101-0.
  24. Zoolfakar AS, Rani RA, Morfa AJ, O’Mullane AP, Kalantar-zadeh K. Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. J Mater Chem C. 2014;2:5247–70. DOI: 10.1039/C4TC00345D.
  25. Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK. Green chemistry based benign routes for nanoparticle synthesis. J Nanoparticles. 2014;2014ID 302429. DOI: 10.1155/2014/302429.
  26. Sundar S, Venkatachalam G, Kwon SJ. Biosynthesis of Copper Oxide (CuO) Nanowires and Their Use for the Electrochemical Sensing of Dopamine. Nanomaterials. 2018;8:823. DOI: 10.3390/
  27. Cuevas R, Durán N, Diez MC, Tortella GR, Rubilar O. Extracellular Biosynthesis of Copper and Copper Oxide Nanoparticles by Stereum hirsutum, a Native White-Rot Fungus from Chilean Forests. J Nanomater. 2015. DOI: 10.1155/2015/789089.
  28. Jing C, Yan CJ, Yuan XT, Zhu LP. Biosynthesis of copper oxide nanoparticles and their potential synergistic effect on alloxan induced oxidative stress conditions during cardiac injury in Sprague-Dawley rats. J Photochem Photobiol B Biol. 2019;198:111557. DOI: 10.1016/j.jphotobiol.
    111557, PubMed: 31382091.
  29. Argueta-Figueroa L, Scougall-Vilchis RJ, Morales-Luckie RA, Olea-Mejía OF. An evaluation of the antibacterial properties and shear bond strength of copper nanoparticles as a nanofiller in orthodontic adhesive. Aust Orthod J. 2015;31:42–48. DOI: 10.21307/aoj-2020-139, PubMed: 26219146.
  30. Manto M. Abnormal copper homeostasis: Mechanisms and roles in neurodegeneration. Toxics. 2014;2:327–345. DOI: 10.3390/toxics2020327.
  31. Valodkar M, Modi S, Pal A, Thakore S. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach. Mater Res Bull. 2011;46:384–389. DOI: 10.1016/j.mater
    2010.12.001.
  32. Dimkpa CO, Bindraban PS, Fugice J, Agyin-Birikorang S, Singh U, Hellums D. Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev. 2017;37:5. DOI: 10.1007/s13593-016-0412-8.
  33. Ghosh S, More P, Nitnavare R, Jagtap S, Chippalkatti R, Derle A, et al. Antidiabetic and antioxidant properties of copper nanoparticles synthesized by medicinal plant Dioscorea bulbifera. J Nanomed Nanotechnol. 2015;S6:1.
  34. Hassanien R, Husein DZ, Al-Hakkani MF. Biosynthesis of copper nanoparticles using aqueous Tilia extract: Antimicrobial and anticancer activities. Heliyon. 2018;4. DOI: 10.1016/j.heliyon.
    e01077, PubMed: 30603710.
  35. Jia B, Mei Y, Cheng L, Zhou J, Zhang L. Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces. 2012;4:2897–2902. DOI: 10.1021/am3007609, PubMed: 22680307.
  36. Nehra M, Dilbaghi N, Marrazza G, Kaushik A, Sonne C, Kim KH, et al. Emerging nanobiotechnology in agriculture for the management of pesticide residues. J Hazard Mater. 2021;401:123369. DOI: 10.1016/j.jhazmat.2020.123369, PubMed: 32763682.
  37. Kulkarni VB, Kulkarni P. Green synthesis of copper nanoparticles using OcimumSanctum leaf extract. Int J Chem Stud. 2013;1:1–4.
  38. Kumbhakar DV, Datta AK, Mandal A, Das D, Gupta S, Ghosh B, et al. Effectivity of copper and cadmium sulphide nanoparticles in mitotic and meiotic cells of Nigella sativa L. (black cumin) – Can nanoparticles act as mutagenic agents? J Exp Nanosci. 2016;11:823–839. DOI: 10.1080/
    2016.1149236.
  39. Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A. Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl Mater Interfaces. 2012;4:1313–1323. DOI: 10.1021/am201586w, PubMed: 22301575.
  40. Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM. Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. J Exp Nanosci. 2016;11:1019–1031. DOI: 10.1080/17458080.2016.1184766.
  41. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA. Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett. 2012;71:114–116. DOI: 10.1016/j.
    2011.12.055.
  42. Valodkar M, Nagar PS, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S. Euphorbiaceae latex induced green synthesis of non-cytotoxic metallic nanoparticle solutions: A rational approach to antimicrobial applications. Colloids Surf A Physicochem Eng Asp. 2011;384:337–344. DOI: 10.1016/j.colsurfa.2011.04.015.
  43. Nasrollahzadeh M, Sajadi SM. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. J Colloid Interface Sci. 2015;457:141–147. DOI: 10.1016/j.jcis.2015.07.004, PubMed: 26164245.
  44. Ismail M, Gul S, Khan MI, Khan MA, Asiri AM, Khan SB. Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes Congo red and methyl orange. Green Process Synth. 2019;8:135–143. DOI: 10.1515/gps-2018-0038.
  45. Sharma P, Pant S, Dave V, Tak K, Sadhu V, Reddy KR. Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J Microbiol Methods. 2019;160:107–116. DOI: 10.1016/j.
    2019.03.007, PubMed: 30871999.
  46. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249. DOI: 10.2147/IJN.S121956, PubMed: 28243086.
  47. Elmer W, De La Torre-Roche R, Pagano L, Majumdar S, Zuverza-Mena N, Dimkpa C, et al. Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Dis. 2018;102:1394–1401. DOI: 10.1094/PDIS-10-17-1621-RE, PubMed: 30673561.
  48. Amer MW, Awwad AM. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem Int. 2020;7:1–8.
  49. Singh S. Green Synthesis and Characterization of Copper Nanoparticles using Madhunashini leaf extract and evaluation of its antibacterial property. Int J Innov Res Sci Eng Technol. 2018;4:
    307–312.
  50. Hasan SS, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BL, et al. Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol. 2008;8:3191–3196. DOI: 10.1166/jnn.2008.095, PubMed: 18681067.
  51. Rajesh R, Bhargava SK, Bansal V. Biological synthesis of copper/copper oxide nanoparticles. Chemca Conference. 2011.
  52. Varshney R, Bhadauria S, Gaur MS, Pasricha R. Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM. 2010;62:102–4. DOI: 10.1007/s11837-010-0171-y.
  53. Singh V, Patil R, Anand A, Milani P, Gade WN. Biological synthesis of copper oxide nanoparticles using Escherichia coli. Curr Nanosci. 2010;6:365–9. DOI: 10.2174/157341310791659062.
  54. Tiwari M, Jain P, Chandrashekhar RCH, Narayanan K, Bhat U, Udupa N, Rao JV. Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Biochem. 2016;51:1348–56. DOI: 10.1016/j.procbio.2016.08.008.
  55. Hassan SED, Fouda A, Radwan AA, Salem SS, Barghoth MG, Awad MA, et al. Endophytic actinomycetes Streptomyces spp. mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem. 2019;24:377–93. DOI: 10.1007/s00775-019-01654-5, PubMed: 30915551.
  56. Hassan SED, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM. New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiat Res Appl Sci. 2018;11:262–70. DOI: 10.1016/j.jrras.2018.05.003.
  57. Bramhanwade K, Shende S, Bonde S, Gade A, Rai M. Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environmental chemistry letters. 2016 Jun;14:229-35.
  58. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46:2242–50. DOI: 10.1021/es204168d, PubMed: 22260395.
  59. Honary S, Barabadi H, Fathabad EG, Naghibi F. Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum, and Penicillium wakasmanii. Dig J Nanomater Biostruct. 2012;7:999–1005.
  60. Allaker RP, Ren G. Potential impact of nanotechnology on the control of infectious diseases. Trans R Soc Trop Med Hyg. 2008;102:1–2. DOI: 10.1016/j.trstmh.2007.07.003, PubMed: 17706258.
  61. Tadesse DA, Zhao S, Tong E, Ayers S, Singh A, Bartholomew MJ, McDermott PF. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg Infect Dis. 2012;18:741–9. DOI: 10.3201/eid1805.111153, PubMed: 22515968.
  62. Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Hussin SM. Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. J Colloid Interface Sci. 2016;466:113–9. DOI: 10.1016/j.jcis.2015.12.018, PubMed: 26707778.
  63. Shalaby TA, Bayoumi Y, Abdalla N, Taha H, Alshaal T, Shehata S, et al. Nanoparticles, soils, plants and sustainable agriculture. In: Nanoscience in Food and Agriculture I, Vol. 20. Berlin (DE): Springer International Publishing; 2016. p. 283–312. DOI: 10.1007/978-3-319-39303-2_10.
  64. Borgatta J, Ma C, Hudson-Smith N, Elmer W, Plaza Pérez CD, De La Torre-Roche R, et al. Copper-based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): Role of particle morphology, composition and dissolution behavior. ACS Sustain Chem Eng. 2018;6:14847–56. DOI: 10.1021/acssuschemeng.8b03379.
  65. Lamichhane JR, Osdaghi E, Behlau F, Köhl J, Jones JB, Aubertot JN. Thirteen decades of antimicrobial copper compounds applied in agriculture: A review. Agron Sustain Dev. 2018;38:28. DOI: 10.1007/s13593-018-0503-9.
  66. Priyanka N, Geetha N, Ghorbanpour M, Venkatachalam P. Role of engineered zinc and copper oxide nanoparticles in promoting plant growth and yield: Present status and future prospects. In: Advances in Phytonanotechnology. Cambridge (MA): Academic Press; 2019. p. 183–201.
  67. Nair PMG, Chung IM. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res Int. 2014;21:12709–22. DOI: 10.1007/s11356-014-3210-3, PubMed: 24965006.
  68. López-Vargas ER, Ortega-Ortíz H, Cadenas-Pliego G, de Alba Romenus K, Cabrera de la Fuente M, Benavides-Mendoza A, Juárez-Maldonado A. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Appl Sci. 2018;8:1020. DOI: 10.3390/app8071020.
  69. Siddiqi KS, Husen A. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: A review. Biomater Res. 2020;24:11. DOI: 10.1186/s40824-020-00188-1, PubMed: 32514371.
  70. Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL. Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process Impacts. 2015;17:1783–93. DOI: 10.1039/c5em00329
    f, PubMed: 26311125.
  71. Rottet S, Besagni C, Kessler F. The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim Biophys Acta. 2015;1847:889–99. DOI: 10.1016/j.bbabio.2015.02.
    002, PubMed: 25667966.
  72. Da Costa MVJ, Sharma PK. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2015;54:110–9.
  73. Perreault F, Popovic R, Dewez D. Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut. 2014;185:219–27. DOI: 10.1016/j.envpol.2013.10.027, PubMed: 24286697.
  74. Tighe-Neira R, Carmona E, Recio G, Nunes-Nesi A, Reyes-Diaz M, Alberdi M, et al. Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. Plant Physiol Biochem. 2018;130:408–17. DOI: 10.1016/j.plaphy.2018.07.024, PubMed: 30064097.
  75. Rajput V, Minkina T, Fedorenko A, Sushkova S, Mandzhieva S, Lysenko V, et al. Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Sci Total Environ. 2018;645:1103–13. DOI: 10.1016/j.scitotenv.2018.07.133.
  76. Van Nguyen D, Nguyen HM, Le NT, Nguyen KH, Nguyen HT, Le HM, et al. Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. J Plant Growth Regul. 2022;41:364-75. DOI: 10.1007/s00344-021-10301-w.
  77. Dimkpa CO, Bindraban PS, Fugice J, Agyin-Birikorang S, Singh U, Hellums D. Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev. 2017;37:5. DOI: 10.1007/s13593-016-0412-8.
  78. Castro MJL, Ojeda C, Cirelli AF. Advances in surfactants for agrochemicals. Environ Chem Lett. 2014;12:85-95. DOI: 10.1007/s10311-013-0432-4.
  79. Chowdappa P, Gowda S. Nanotechnology in crop protection: Status and scope. Pest Manag Hortic Ecosyst. 2013;19:131-51.
  80. Giannousi K, Avramidis I, Dendrinou-Samara C. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv. 2013;3:21743-52. DOI: 10.1039/c3ra42118j.
  81. Mondal KK, Mani C. Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol. 2012;62:889-93. DOI: 10.1007/s13213-011-0382-7.
  82. Nagaonkar D, Shende S, Rai M. Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa. Biotechnol Prog. 2015;31:557-65. DOI: 10.1002/btpr.
    2040, PubMed: 25607830.
  83. Chen J, Mao S, Xu Z, Ding W. Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Adv. 2019;9:3788-99. DOI: 10.1039/c8ra09186b, PubMed: 35518060.
  84. Vanti GL, Masaphy S, Kurjogi M, Chakrasali S, Nargund VB. Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. Int J Biol Macromol. 2020;156:1387-95. DOI: 10.1016/j.ijbiomac.2019.11.179, PubMed: 31760011.
  85. Hao Y, Cao XQCX, Ma Z, Zhao ZT, N Ali ATQ, et al. Front Plant Sci. 2017;8:1322.
  86. Mohamed EA, Elsharabasy SF, Abdulsamad D. Evaluation of in vitro nematicidal efficiency of copper nanoparticles against root-knot nematode Meloidogyne incognita. South Asian J Parasitol. 2019;1–6.
  87. Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371-84. DOI: 10.1038/nrmicro3028, PubMed: 23669886.
  88. Swarnkar RK, Pandey JK, Soumya KK, Dwivedi P, Sundaram S, Prasad S, et al. Enhanced antibacterial activity of copper/copper oxide nanowires prepared by pulsed laser ablation in water medium. Appl Phys A. 2016;122:1-7.
  89. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, et al. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol. 2010;60:75-80. DOI: 10.1007/s13213-010-0015-6.
  90. Zhong T, Oporto GS, Jaczynski J, Jiang C. Nanofibrillated cellulose and copper nanoparticles embedded in polyvinyl alcohol films for antimicrobial applications. Biomed Res Int. 2015;2015:456834. DOI: 10.1155/2015/456834, PubMed: 26137482.
  91. Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol. 2015;31:865-73. DOI: 10.1007/s11274-015-1840-3, PubMed: 25761857.
  92. Deryabin DG, Aleshina ES, Vasilchenko AS, Deryabina TD, Efremova LV, Karimov IF, et al. Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains. Nanotechnol Russ. 2013;8:402-8. DOI: 10.1134/S1995078013030063.
  93. Rai M, Ingle AP, Pandit R, Paralikar P, Shende S, Gupta I, et al. Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnol Rev. 2018;7:303-15. DOI: 10.1515/ntrev-2018-0031.
  94. Crisan MC, Teodora M, Lucian M. Copper nanoparticles: Synthesis and characterization, physiology, toxicity and antimicrobial applications. Applied Sciences. 2021 Dec 24;12(1):141.
  95. Tamayo L, Azócar M, Kogan M, Riveros A, Páez M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C Mater Biol Appl. 2016;69:1391-409. DOI: 10.1016/j.msec.2016.08.041, PubMed: 27612841.
  96. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. 2011;59:3485-93. DOI: 10.1021/jf104517j, PubMed: 21405020.
  97. Keller AA, Adeleye AS, Conway JR, Garner KL, Zhao L, Cherr GN, et al. Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact. 2017;7:28-40.
  98. Rayan A, Raiyn J, Falah M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One. 2017;12. DOI: 10.1371/journal.pone.0187925, PubMed: 29121120.
  99. Ahmed B, Khan MS, Musarrat J. Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): A study on growth dynamics and plant cell death. Environ Pollut. 2018;240:802-16. DOI: 10.1016/j.envpol.2018.05.015, PubMed: 29783198.
  100. Rajput VD, M T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V, et al. Effects of copper nanoparticles (CuO NPs) on crop plants: A minireview. BioNanoSci. 2017;8:36-42.
  101. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, et al. Impact of metal and metal oxide nanoparticles on plants: A critical review. Front Chem. 2017;5:78. DOI: 10.3389/fchem.
    00078, PubMed: 29075626.
  102. Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, et al. Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ. 2016;563-564:904-11.
  103. Deng MJ, Wang CC, Ho PJ, Lin CM, Chen JM, Lu KT. Facile electrochemical synthesis of 3D nano-architectured CuO electrodes for high-performance supercapacitors. J Mater Chem A. 2014;2:12857-65. DOI: 10.1039/C4TA02444C.
  104. Ahmed B, Dwivedi S, Abdin MZ, Azam A, Al-Shaeri M, Khan MS, et al. Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Sci Rep. 2017;7:40685. DOI: 10.1038/srep40685, PubMed: 28120857.
  105. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, et al. Copper oxide nanoparticle-mediated DNA damage in terrestrial plant models. Environ Sci Technol. 2012;46:1819-27.
  106. Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I. Silver nanoparticles in soil–plant systems. J Nanopart Res. 2013;15:1896. DOI: 10.1007/s11051-013-1896-7.
  1. Keller AA, Lazareva A. Predicted releases of engineered nanomaterials: From global to regional to local. Environ Sci Technol Lett. 2014;1:65–70. DOI: 10.1021/ez400106t.
  2. Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2:3. DOI: 10.1186/1477-3155-2-3, PubMed: 15119954.
  3. Servin AD, De la Torre-Roche R, Castillo-Michel H, Pagano L, Hawthorne J, Musante C, et al. Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiol Biochem. 2017;110:147–57. DOI: 10.1016/j.plaphy.2016.06.003, PubMed: 27288265.
  4. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46:2242–50. DOI: 10.1021/es204168
    d, PubMed: 22260395.
  5. Yadav T, Mungray AA, Mungray AK. Fabricated nanoparticles: Current status and potential phytotoxic threats. Rev Environ Contam Toxicol. 2014;230:83–110. DOI: 10.1007/978-3-319-04411-8_4, PubMed: 24609519.
  6. Wu PC, Chen HH, Chen SY, Wang WL, Yang KL, Huang CH, et al. Graphene oxide conjugated with polymers: A study of culture condition to determine whether a bacterial growth stimulant or an antimicrobial agent? J Nanobiotechnology. 2018;16:1. DOI: 10.1186/s12951-017-0328-8, PubMed: 29321058.
  7. Mu Q, Yu J, McConnachie LA, Kraft JC, Gao Y, Gulati GK, et al. Translation of combination nanodrugs into nanomedicines: Lessons learned and future outlook. J Drug Target. 2018;26:435–47. DOI: 10.1080/1061186X.2017.1419363, PubMed: 29285948.
  8. Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, et al. Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. J Environ Manage. 2016;184:157–69. DOI: 10.1016/j.jenvman.2016.09.071, PubMed: 27697374.
  9. DeForest DK, Gensemer RW, Gorsuch JW, Meyer JS, Santore RC, Shephard BK, et al. Effects of copper on olfactory, behavioral, and other sublethal responses of saltwater organisms: Are estimated chronic limits using the biotic ligand model protective? Environ Toxicol Chem. 2018;37:1515–22. DOI: 10.1002/etc.4112, PubMed: 29442368.
  10. Bulcke F, Dringen R, Scheiber IF. Neurotoxicity of copper. Adv Neurobiol. 2017;18:313–43. DOI: 10.1007/978-3-319-60189-2_16, PubMed: 28889275.
  11. Litwin T, Schneider SA, Flaten TP, Aaseth J. The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases D usek, P. J Trace Elem Med Biol. 2015;31:193–203.
  12. Filipič G, Cvelbar U. Copper oxide nanowires: A review of growth. Nanotechnology. 2012;23ID 194001. DOI: 10.1088/0957-4484/23/19/194001, PubMed: 22538410.
  13. Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P. Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci. 2016;7:1288. DOI: 10.3389/fpls.2016.
    01288, PubMed: 27617020.
  14. Shalaby TA, Bayoumi Y, Abdalla N, Taha H, Alshaal T, Shehata S, et al. Nanoparticles, soils, plants and sustainable agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E, editors. Nanoscience in Food and Agriculture 1, Sustainable Agriculture Reviews, Vol. 20. Berlin: Springer; 2016. p. 283–312. DOI: 10.1007/978-3-319-39303-2_10.
  15. Zhang J, Feng H, Qin Q, Zhang G, Cui Y, Chai Z, et al. Interior design of three-dimensional CuO ordered architectures with enhanced performance for supercapacitors. J Mater Chem A. 2016;4:6357–67. DOI: 10.1039/C6TA00397D.
  16. Qing T, Zhang K, Qing Z, Wang X, Long C, Zhang P, et al. Recent progress in copper nanocluster-based fluorescent probing: A review. Mikrochim Acta. 2019;186:670. DOI: 10.1007/s00604-019-3747-4, PubMed: 31489488.
  17. Dubey A, Mailapalli DR. Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Lichtfouse E, editor. Sustainable Agriculture Reviews, Vol. 19. Switzerland: Springer; 2016. p. 307–30. DOI: 10.1007/978-3-319-26777-7_7.
  18. Passam HC, Karapanos IC, Bebeli PJ, Dimitrios S. A review of Recent Research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality, the European. J Plant Sci Biotechnol. 2007;1:1–21.
  19. Mengel K, Kirkby EA, Kosegarten H, Appel T. Zinc. In: Principles of Plant Nutrition. Dordrecht: Springer; 2001. p. 585–97.
  20. Abou El-Nour KMM, Eftaiha AA, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3:135–40. DOI: 10.1016/j.arabjc.2010.04.008.
  21. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine. 2010;6:257–62. DOI: 10.1016/j.nano.2009.07.002, PubMed: 19616126.
  22. Lanje AS, Sharma SJ, Pode RB, Ningthoujam RS. Synthesis and optical characterization of copper oxide nanoparticles. Adv Appl Sci Res. 2010;1:36–40.
  23. El-Batal AI, El-Sayyad GS, El-Ghamery A, Gobara M. Response surface methodology optimization of melanin production by Streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. J Clust Sci. 2017;28:1083–112. DOI: 10.1007/s10876-016-1101-0.
  24. Zoolfakar AS, Rani RA, Morfa AJ, O’Mullane AP, Kalantar-zadeh K. Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. J Mater Chem C. 2014;2:5247–70. DOI: 10.1039/C4TC00345D.
  25. Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK. Green chemistry based benign routes for nanoparticle synthesis. J Nanoparticles. 2014;2014ID 302429. DOI: 10.1155/2014/302429.
  26. Sundar S, Venkatachalam G, Kwon SJ. Biosynthesis of Copper Oxide (CuO) Nanowires and Their Use for the Electrochemical Sensing of Dopamine. Nanomaterials. 2018;8:823. DOI: 10.3390/
  27. Cuevas R, Durán N, Diez MC, Tortella GR, Rubilar O. Extracellular Biosynthesis of Copper and Copper Oxide Nanoparticles by Stereum hirsutum, a Native White-Rot Fungus from Chilean Forests. J Nanomater. 2015. DOI: 10.1155/2015/789089.
  28. Jing C, Yan CJ, Yuan XT, Zhu LP. Biosynthesis of copper oxide nanoparticles and their potential synergistic effect on alloxan induced oxidative stress conditions during cardiac injury in Sprague-Dawley rats. J Photochem Photobiol B Biol. 2019;198:111557. DOI: 10.1016/j.jphotobiol.
    111557, PubMed: 31382091.
  29. Argueta-Figueroa L, Scougall-Vilchis RJ, Morales-Luckie RA, Olea-Mejía OF. An evaluation of the antibacterial properties and shear bond strength of copper nanoparticles as a nanofiller in orthodontic adhesive. Aust Orthod J. 2015;31:42–48. DOI: 10.21307/aoj-2020-139, PubMed: 26219146.
  30. Manto M. Abnormal copper homeostasis: Mechanisms and roles in neurodegeneration. Toxics. 2014;2:327–345. DOI: 10.3390/toxics2020327.
  31. Valodkar M, Modi S, Pal A, Thakore S. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach. Mater Res Bull. 2011;46:384–389. DOI: 10.1016/j.mater
    2010.12.001.
  32. Dimkpa CO, Bindraban PS, Fugice J, Agyin-Birikorang S, Singh U, Hellums D. Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev. 2017;37:5. DOI: 10.1007/s13593-016-0412-8.
  33. Ghosh S, More P, Nitnavare R, Jagtap S, Chippalkatti R, Derle A, et al. Antidiabetic and antioxidant properties of copper nanoparticles synthesized by medicinal plant Dioscorea bulbifera. J Nanomed Nanotechnol. 2015;S6:1.
  34. Hassanien R, Husein DZ, Al-Hakkani MF. Biosynthesis of copper nanoparticles using aqueous Tilia extract: Antimicrobial and anticancer activities. Heliyon. 2018;4. DOI: 10.1016/j.heliyon.
    e01077, PubMed: 30603710.
  35. Jia B, Mei Y, Cheng L, Zhou J, Zhang L. Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces. 2012;4:2897–2902. DOI: 10.1021/am3007609, PubMed: 22680307.
  36. Nehra M, Dilbaghi N, Marrazza G, Kaushik A, Sonne C, Kim KH, et al. Emerging nanobiotechnology in agriculture for the management of pesticide residues. J Hazard Mater. 2021;401:123369. DOI: 10.1016/j.jhazmat.2020.123369, PubMed: 32763682.
  37. Kulkarni VB, Kulkarni P. Green synthesis of copper nanoparticles using OcimumSanctum leaf extract. Int J Chem Stud. 2013;1:1–4.
  38. Kumbhakar DV, Datta AK, Mandal A, Das D, Gupta S, Ghosh B, et al. Effectivity of copper and cadmium sulphide nanoparticles in mitotic and meiotic cells of Nigella sativa L. (black cumin) – Can nanoparticles act as mutagenic agents? J Exp Nanosci. 2016;11:823–839. DOI: 10.1080/
    2016.1149236.
  39. Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A. Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl Mater Interfaces. 2012;4:1313–1323. DOI: 10.1021/am201586w, PubMed: 22301575.
  40. Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM. Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. J Exp Nanosci. 2016;11:1019–1031. DOI: 10.1080/17458080.2016.1184766.
  41. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA. Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett. 2012;71:114–116. DOI: 10.1016/j.
    2011.12.055.
  42. Valodkar M, Nagar PS, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S. Euphorbiaceae latex induced green synthesis of non-cytotoxic metallic nanoparticle solutions: A rational approach to antimicrobial applications. Colloids Surf A Physicochem Eng Asp. 2011;384:337–344. DOI: 10.1016/j.colsurfa.2011.04.015.
  43. Nasrollahzadeh M, Sajadi SM. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. J Colloid Interface Sci. 2015;457:141–147. DOI: 10.1016/j.jcis.2015.07.004, PubMed: 26164245.
  44. Ismail M, Gul S, Khan MI, Khan MA, Asiri AM, Khan SB. Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes Congo red and methyl orange. Green Process Synth. 2019;8:135–143. DOI: 10.1515/gps-2018-0038.
  45. Sharma P, Pant S, Dave V, Tak K, Sadhu V, Reddy KR. Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J Microbiol Methods. 2019;160:107–116. DOI: 10.1016/j.
    2019.03.007, PubMed: 30871999.
  46. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249. DOI: 10.2147/IJN.S121956, PubMed: 28243086.
  47. Elmer W, De La Torre-Roche R, Pagano L, Majumdar S, Zuverza-Mena N, Dimkpa C, et al. Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Dis. 2018;102:1394–1401. DOI: 10.1094/PDIS-10-17-1621-RE, PubMed: 30673561.
  48. Amer MW, Awwad AM. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem Int. 2020;7:1–8.
  49. Singh S. Green Synthesis and Characterization of Copper Nanoparticles using Madhunashini leaf extract and evaluation of its antibacterial property. Int J Innov Res Sci Eng Technol. 2018;4:
    307–312.
  50. Hasan SS, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BL, et al. Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol. 2008;8:3191–3196. DOI: 10.1166/jnn.2008.095, PubMed: 18681067.
  51. Rajesh R, Bhargava SK, Bansal V. Biological synthesis of copper/copper oxide nanoparticles. Chemca Conference. 2011.
  52. Varshney R, Bhadauria S, Gaur MS, Pasricha R. Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM. 2010;62:102–4. DOI: 10.1007/s11837-010-0171-y.
  53. Singh V, Patil R, Anand A, Milani P, Gade WN. Biological synthesis of copper oxide nanoparticles using Escherichia coli. Curr Nanosci. 2010;6:365–9. DOI: 10.2174/157341310791659062.
  54. Tiwari M, Jain P, Chandrashekhar RCH, Narayanan K, Bhat U, Udupa N, Rao JV. Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Biochem. 2016;51:1348–56. DOI: 10.1016/j.procbio.2016.08.008.
  55. Hassan SED, Fouda A, Radwan AA, Salem SS, Barghoth MG, Awad MA, et al. Endophytic actinomycetes Streptomyces spp. mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem. 2019;24:377–93. DOI: 10.1007/s00775-019-01654-5, PubMed: 30915551.
  56. Hassan SED, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM. New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiat Res Appl Sci. 2018;11:262–70. DOI: 10.1016/j.jrras.2018.05.003.
  57. Bramhanwade K, Shende S, Bonde S, Gade A, Rai M. Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environmental chemistry letters. 2016 Jun;14:229-35.
  58. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46:2242–50. DOI: 10.1021/es204168d, PubMed: 22260395.
  59. Honary S, Barabadi H, Fathabad EG, Naghibi F. Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum, and Penicillium wakasmanii. Dig J Nanomater Biostruct. 2012;7:999–1005.
  60. Allaker RP, Ren G. Potential impact of nanotechnology on the control of infectious diseases. Trans R Soc Trop Med Hyg. 2008;102:1–2. DOI: 10.1016/j.trstmh.2007.07.003, PubMed: 17706258.
  61. Tadesse DA, Zhao S, Tong E, Ayers S, Singh A, Bartholomew MJ, McDermott PF. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg Infect Dis. 2012;18:741–9. DOI: 10.3201/eid1805.111153, PubMed: 22515968.
  62. Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Hussin SM. Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. J Colloid Interface Sci. 2016;466:113–9. DOI: 10.1016/j.jcis.2015.12.018, PubMed: 26707778.
  63. Shalaby TA, Bayoumi Y, Abdalla N, Taha H, Alshaal T, Shehata S, et al. Nanoparticles, soils, plants and sustainable agriculture. In: Nanoscience in Food and Agriculture I, Vol. 20. Berlin (DE): Springer International Publishing; 2016. p. 283–312. DOI: 10.1007/978-3-319-39303-2_10.
  64. Borgatta J, Ma C, Hudson-Smith N, Elmer W, Plaza Pérez CD, De La Torre-Roche R, et al. Copper-based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): Role of particle morphology, composition and dissolution behavior. ACS Sustain Chem Eng. 2018;6:14847–56. DOI: 10.1021/acssuschemeng.8b03379.
  65. Lamichhane JR, Osdaghi E, Behlau F, Köhl J, Jones JB, Aubertot JN. Thirteen decades of antimicrobial copper compounds applied in agriculture: A review. Agron Sustain Dev. 2018;38:28. DOI: 10.1007/s13593-018-0503-9.
  66. Priyanka N, Geetha N, Ghorbanpour M, Venkatachalam P. Role of engineered zinc and copper oxide nanoparticles in promoting plant growth and yield: Present status and future prospects. In: Advances in Phytonanotechnology. Cambridge (MA): Academic Press; 2019. p. 183–201.
  67. Nair PMG, Chung IM. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res Int. 2014;21:12709–22. DOI: 10.1007/s11356-014-3210-3, PubMed: 24965006.
  68. López-Vargas ER, Ortega-Ortíz H, Cadenas-Pliego G, de Alba Romenus K, Cabrera de la Fuente M, Benavides-Mendoza A, Juárez-Maldonado A. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Appl Sci. 2018;8:1020. DOI: 10.3390/app8071020.
  69. Siddiqi KS, Husen A. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: A review. Biomater Res. 2020;24:11. DOI: 10.1186/s40824-020-00188-1, PubMed: 32514371.
  70. Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL. Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process Impacts. 2015;17:1783–93. DOI: 10.1039/c5em00329
    f, PubMed: 26311125.
  71. Rottet S, Besagni C, Kessler F. The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim Biophys Acta. 2015;1847:889–99. DOI: 10.1016/j.bbabio.2015.02.
    002, PubMed: 25667966.
  72. Da Costa MVJ, Sharma PK. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2015;54:110–9.
  73. Perreault F, Popovic R, Dewez D. Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut. 2014;185:219–27. DOI: 10.1016/j.envpol.2013.10.027, PubMed: 24286697.
  74. Tighe-Neira R, Carmona E, Recio G, Nunes-Nesi A, Reyes-Diaz M, Alberdi M, et al. Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. Plant Physiol Biochem. 2018;130:408–17. DOI: 10.1016/j.plaphy.2018.07.024, PubMed: 30064097.
  75. Rajput V, Minkina T, Fedorenko A, Sushkova S, Mandzhieva S, Lysenko V, et al. Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Sci Total Environ. 2018;645:1103–13. DOI: 10.1016/j.scitotenv.2018.07.133.
  76. Van Nguyen D, Nguyen HM, Le NT, Nguyen KH, Nguyen HT, Le HM, et al. Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. J Plant Growth Regul. 2022;41:364-75. DOI: 10.1007/s00344-021-10301-w.
  77. Dimkpa CO, Bindraban PS, Fugice J, Agyin-Birikorang S, Singh U, Hellums D. Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev. 2017;37:5. DOI: 10.1007/s13593-016-0412-8.
  78. Castro MJL, Ojeda C, Cirelli AF. Advances in surfactants for agrochemicals. Environ Chem Lett. 2014;12:85-95. DOI: 10.1007/s10311-013-0432-4.
  79. Chowdappa P, Gowda S. Nanotechnology in crop protection: Status and scope. Pest Manag Hortic Ecosyst. 2013;19:131-51.
  80. Giannousi K, Avramidis I, Dendrinou-Samara C. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv. 2013;3:21743-52. DOI: 10.1039/c3ra42118j.
  81. Mondal KK, Mani C. Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol. 2012;62:889-93. DOI: 10.1007/s13213-011-0382-7.
  82. Nagaonkar D, Shende S, Rai M. Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa. Biotechnol Prog. 2015;31:557-65. DOI: 10.1002/btpr.
    2040, PubMed: 25607830.
  83. Chen J, Mao S, Xu Z, Ding W. Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Adv. 2019;9:3788-99. DOI: 10.1039/c8ra09186b, PubMed: 35518060.
  84. Vanti GL, Masaphy S, Kurjogi M, Chakrasali S, Nargund VB. Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. Int J Biol Macromol. 2020;156:1387-95. DOI: 10.1016/j.ijbiomac.2019.11.179, PubMed: 31760011.
  85. Hao Y, Cao XQCX, Ma Z, Zhao ZT, N Ali ATQ, et al. Front Plant Sci. 2017;8:1322.
  86. Mohamed EA, Elsharabasy SF, Abdulsamad D. Evaluation of in vitro nematicidal efficiency of copper nanoparticles against root-knot nematode Meloidogyne incognita. South Asian J Parasitol. 2019;1–6.
  87. Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371-84. DOI: 10.1038/nrmicro3028, PubMed: 23669886.
  88. Swarnkar RK, Pandey JK, Soumya KK, Dwivedi P, Sundaram S, Prasad S, et al. Enhanced antibacterial activity of copper/copper oxide nanowires prepared by pulsed laser ablation in water medium. Appl Phys A. 2016;122:1-7.
  89. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, et al. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol. 2010;60:75-80. DOI: 10.1007/s13213-010-0015-6.
  90. Zhong T, Oporto GS, Jaczynski J, Jiang C. Nanofibrillated cellulose and copper nanoparticles embedded in polyvinyl alcohol films for antimicrobial applications. Biomed Res Int. 2015;2015:456834. DOI: 10.1155/2015/456834, PubMed: 26137482.
  91. Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol. 2015;31:865-73. DOI: 10.1007/s11274-015-1840-3, PubMed: 25761857.
  92. Deryabin DG, Aleshina ES, Vasilchenko AS, Deryabina TD, Efremova LV, Karimov IF, et al. Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains. Nanotechnol Russ. 2013;8:402-8. DOI: 10.1134/S1995078013030063.
  93. Rai M, Ingle AP, Pandit R, Paralikar P, Shende S, Gupta I, et al. Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnol Rev. 2018;7:303-15. DOI: 10.1515/ntrev-2018-0031.
  94. Crisan MC, Teodora M, Lucian M. Copper nanoparticles: Synthesis and characterization, physiology, toxicity and antimicrobial applications. Applied Sciences. 2021 Dec 24;12(1):141.
  95. Tamayo L, Azócar M, Kogan M, Riveros A, Páez M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C Mater Biol Appl. 2016;69:1391-409. DOI: 10.1016/j.msec.2016.08.041, PubMed: 27612841.
  96. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. 2011;59:3485-93. DOI: 10.1021/jf104517j, PubMed: 21405020.
  97. Keller AA, Adeleye AS, Conway JR, Garner KL, Zhao L, Cherr GN, et al. Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact. 2017;7:28-40.
  98. Rayan A, Raiyn J, Falah M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One. 2017;12. DOI: 10.1371/journal.pone.0187925, PubMed: 29121120.
  99. Ahmed B, Khan MS, Musarrat J. Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): A study on growth dynamics and plant cell death. Environ Pollut. 2018;240:802-16. DOI: 10.1016/j.envpol.2018.05.015, PubMed: 29783198.
  100. Rajput VD, M T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V, et al. Effects of copper nanoparticles (CuO NPs) on crop plants: A minireview. BioNanoSci. 2017;8:36-42.
  101. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, et al. Impact of metal and metal oxide nanoparticles on plants: A critical review. Front Chem. 2017;5:78. DOI: 10.3389/fchem.
    00078, PubMed: 29075626.
  102. Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, et al. Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ. 2016;563-564:904-11.
  103. Deng MJ, Wang CC, Ho PJ, Lin CM, Chen JM, Lu KT. Facile electrochemical synthesis of 3D nano-architectured CuO electrodes for high-performance supercapacitors. J Mater Chem A. 2014;2:12857-65. DOI: 10.1039/C4TA02444C.
  104. Ahmed B, Dwivedi S, Abdin MZ, Azam A, Al-Shaeri M, Khan MS, et al. Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Sci Rep. 2017;7:40685. DOI: 10.1038/srep40685, PubMed: 28120857.
  105. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, et al. Copper oxide nanoparticle-mediated DNA damage in terrestrial plant models. Environ Sci Technol. 2012;46:1819-27.
  106. Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I. Silver nanoparticles in soil–plant systems. J Nanopart Res. 2013;15:1896. DOI: 10.1007/s11051-013-1896-7.

 


Regular Issue Subscription Review Article
Volume 14
Issue 02
Received August 27, 2024
Accepted September 7, 2024
Published September 20, 2024

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.