The Technological Evolution of Conventional Engines in Transport Systems Aimed at Mitigating Atmospheric Pollutant Emissions

Year : 2025 | Volume : 12 | Issue : 01 | Page : 22-32
    By

    Ana Flávia Rodrigues Alcântara,

  • Carlos Eduardo Sanches de Andrade,

Abstract

The automotive sector is a major contributor to atmospheric pollution and faces increasing pressure to adopt sustainable energy alternatives. This study explores technological innovations aimed at reducing vehicle emissions, focusing on advancements in internal combustion engine efficiency and the expanding role of renewable fuels such as ethanol and biodiesel. The transition to electric vehicles is also analyzed, emphasizing benefits in emission reduction and challenges related to charging infrastructure and battery production. The primary objective of this research is to identify technological enhancements applicable to conventional engines in transportation systems to mitigate atmospheric pollution. The methodology involves an integrative literature review using sources from the CAPES Journal Portal, USP Journal Portal, Google Scholar, and SciELO. The study examines existing technologies in conventional engines, such as catalytic converters, start-stop systems, and diesel particulate filters, while assessing the impact of transitioning toward a more sustainable automotive industry through biofuel adoption and electric vehicle promotion.

Keywords: Otto/diesel cycle, conventional engines, biofuels, electric vehicles, sustainability

[This article belongs to Trends in Transport Engineering and Applications ]

How to cite this article:
Ana Flávia Rodrigues Alcântara, Carlos Eduardo Sanches de Andrade. The Technological Evolution of Conventional Engines in Transport Systems Aimed at Mitigating Atmospheric Pollutant Emissions. Trends in Transport Engineering and Applications. 2025; 12(01):22-32.
How to cite this URL:
Ana Flávia Rodrigues Alcântara, Carlos Eduardo Sanches de Andrade. The Technological Evolution of Conventional Engines in Transport Systems Aimed at Mitigating Atmospheric Pollutant Emissions. Trends in Transport Engineering and Applications. 2025; 12(01):22-32. Available from: https://journals.stmjournals.com/ttea/article=2025/view=209353


References

  1. Ministério do Meio Ambiente e Mudança do Clima [Ministry of Environment and Climate Change]. (2010). Brazil publishes its first national on-road vehicles emission inventory. [online] Available from: https://www.gov.br/mma/pt-br/noticias/brazil-publishes-its-first-national-onroad-vehicles-emission-inventory.
  2. Anderson HR. Air pollution and mortality: A history. Atmos Environ. 2009;43:142–52. DOI: 10.1016/j.atmosenv.2008.09.026.
  3. Achour H, Carton JG, Olabi AG. Estimating vehicle emissions from road transport, case study: Dublin City. Appl Energy. 2011;88:1957–64. DOI: 10.1016/j.apenergy.2010.12.032.
  4. Peet K, Gota S, Huizenga C, Medimorec N, Enriquez A, Yiu A, Verheul B, Dalkmann H, Cardama M. SLoCaT Secretariat Team. Transport and Climate Change Global Status Report 2018. Partnership on Sustainable, Low Carbon Transport (SLoCaT); 2018. Available from: https://www.changing-transport.org/wp-content/uploads/slocat_transport-and-climate-change-2018-web.pdf.
  5. Policarpo NA, Silva C, Lopes TFA, Araújo RS, Cavalcante FSÁ, Pitombo CS, et al. Road vehicle emission inventory of a Brazilian metropolitan area and insights for other emerging economies. Transp Res Part D Transp Environ. 2018;58:172–85. DOI: 10.1016/j.trd.2017.12.004.
  6. Branco JEH, Bartholomeu DB, Vettorazzi AC. Evaluation of CO₂ emissions in ethanol transport: application of an optimization model. Transportes. 2020;28:63–80.
  7. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. [National Agency of Petroleum, Natural Gas and Biofuels]. (2024). ANP divulga dados consolidados do setor regulado em 2023. [ANP releases consolidated data for the regulated sector in 2023]. [Portuguese] [online] Available from: https://www.gov.br/anp/pt-br/canais_atendimento/imprensa/noticias-comunicados/anp-divulga-dados-consolidados-do-setor-regulado-em-2023.
  8. Brazilian Automotive Industry Association (ANFAVEA). Brazilian Automotive Industry Yearbook 2018 [Anuário da Indústria Automobilística Brasileira 2018]. São Paulo: ANFAVEA; 2018.
  9. Ministry of Mines and Energy (MME). Brazilian Energy Balance 2023: Summary Report 2023. Reference Year 2022 [Balanço Energético Nacional 2023: Relatório Síntese. Ano de referência 2022]. Brasília: MME; 2023.
  10. Botelho LLR, Cunha CJCA, Macedo M. O método da revisão integrativa nos estudos organizacionais [The integrative review method in organizational studies]. Gest Soc. 2011 Dec;5(11):121-36. Portuguese. doi: 10.21171/ges.v5i11.1220.
  11. Souza MT, Silva MD, Carvalho R. Integrative review: What is it? How to do it? Einstein. 2010;8:102–6. DOI: 10.1590/S1679-45082010RW1134, PubMed: 26761761.
  12. Santos CMC, Pimenta CAM, Nobre MRC. The PICO strategy for the research question construction and evidence search. Rev Latino-Am Enfermagem. 2007;15:508–11. DOI: 10.1590/S0104-11692007000300023.
  13. National Institute of Cancer (INCA), José Alencar Gomes da Silva. (2021). Air pollution, cancer, and other diseases: What you need to know? [Internet]. Rio de Janeiro: INCA; 2021. Available from: https://www.inca.gov.br/sites/ufu.sti.inca.local/files/media/document/cartilha_poluicao_do_ar_web.pdf.
  14. (2024). Diesel Particulate Filter (DPF): How it works and key maintenance tips. [Online]. Available from: https://prodaditivos.com.br/filtro-dpf/.
  15. Machado S. (2022). Catalisador é precioso e alvo de ladrões: o que é e para que serve a peça [Catalytic converter is precious and a target for thieves: what it is and what the part is for]. [online] UOL Carros. Available from: https://www.uol.com.br/carros/faq/catalisador-o-que-e-e-para-que-serve.htm [Portuguese].
  16. Fernando Naccari. (2021). Qual a importância do catalisador automotivo [Catalytic converter: essential for your vehicle and the environment]. [online] Blog da InstaCarro. Available from: https://www.instacarro.com/blog/manutencao-automotiva/importancia-do-catalisador-automotivo [Portuguese].
  17. Fonseca N, Casanova J, Valdés M. Influence of the stop/start system on CO₂ emissions of a diesel engine in urban traffic. Transp Res Part D. 2011;16:194–200.
  18. Gazzoni DL. O impacto do uso da terra na sustentabilidade dos biocombustíveis [The impact of land use on the sustainability of biofuels]. Londrina (PR): Embrapa Soja, Ministério da Agricultura, Pecuária e Abastecimento; 2014. (Documentos; no. 347). [Portuguese].
  19. Naccari F. O sistema start-stop: vantagens e desvantagens [The start-stop system: advantages and disadvantages]. [Online]. InstaCarro Blog. Available from: https://www.instacarro.com/blog/
    tecnologia-automotiva/sistema-start-stop-como-funciona.
  20. Lima V. (2023). How the particle filter works in diesel engine vehicles [Online]. O Mecânico. Available from: https://omecanico.com.br/como-funciona-o-filtro-de-particulas-dpf-motores-a-diesel/.
  21. Hopkins D, Higham J. Transitioning to low carbon mobility. In: Hopkins D, Higham J, editors. Low Carbon Mobility Transitions. Oxford: Goodfellow Publishers; 2016. http://dx.doi.org/10.23912/978-1-910158-64-7-3267.
  22. Ministério de Minas e Energia (Brasil) [Ministry of Mines and Energy (Brazil)]. (2025). Biodiesel – Ministério de Minas e Energia [Biodiesel – Ministry of Mines and Energy]. [online] Available from: https://antigo.mme.gov.br/web/guest/secretarias/petroleo-gas-natural-e-biocombustiveis/
    acoes-e-programas/programas/biodiesel.
  23. Schirmer WN, Ribeiro CB. Overview of fuels and biofuels in Brazil and emissions from gasoline/ethanol use. Biofix Sci J. 2017;2:16. DOI: 10.5380/biofix.v2i2.53539.
  24. Goldemberg J. The Brazilian biofuels industry. Biotechnol Biofuels. 2008 May 1;1(1):6. doi: 10.1186/1754-6834-1-6. PMID: 18471272; PMCID: PMC2405774.
  25. National Agency of Petroleum, Natural Gas and Biofuels (Brazil). Brazilian Statistical Yearbook of Petroleum, Natural Gas, and Biofuels: 2018. Rio de Janeiro: ANP; 2008. [Portuguese]. Available from: https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/anuario-estatistico/
    arquivos-anuario-estatistico-2018/anuario_2018.pdf.
  26. Fortunato FM, Vieira AL, Gomes Neto JA, Donati GL, Jones BT. Expanding the potentialities of standard dilution analysis: Determination of ethanol in gasoline by Raman spectroscopy. Microchem J. 2017;133:76-80. doi: 10.1016/j.microc.2017.03.015.
  27. Câmara dos Deputados. Projeto de Lei nº 3.013, de 2024. Portuguese. Brasília: Câmara dos Deputados; 2024. [Cabo Gilberto Silva. Bill No. 3,013, 2024: Establishes regulations on the use of ethanol and other renewable fuel sources for Union vehicles] [Online]. Brasília: Chamber of Deputies; 2024. [Portuguese]. Available from: https://www.camara.leg.br/proposicoesWeb/prop_
    mostrarintegra?codteor=2467906&filename=Avulso%20PL%203013/2024.
  28. Pugliese L, Lourencetti C, Ribeiro ML. Environmental impacts of ethanol production in Brazil: A discussion from field to industry. Rev Bras Multidiscip. 2017;20:142.
  29. Goldemberg J, Coelho ST, Guardabassi P. The sustainability of ethanol production from sugarcane. In: Sørensen B, Green MA, Lund P, Luque A, MacGill I, Meibom P, et al., editors. Renewable Energy. London, United Kingdom: Routledge; 2018. p. 321–45. DOI: 10.4324/9781315793245-102.
  30. (2024). Start-stop system: Does it damage or reduce engine lifespan? [Online]. iCarros. Available from: https://www.icarros.com.br.
  31. Murta ALS, de Freitas MAV. CO₂ Emissions Avoided Through the Use of Biodiesel in the Brazilian Road System. International Journal of Energy Economics and Policy. 2018;8(2):59–68.
  32. Ramos LP, Silva FR, Mangrich AS, Cordeiro CS. Biodiesel production technologies. Rev Virtual Quim. 2011;3. DOI: 10.5935/1984-6835.20110043.
  33. Automotive Business. (2024). Biodiesel threatens to increase pollutant emissions in engines. [Online]. Automotive Business. Available from: https://automotivebusiness.com.br/noticias/
    biodiesel-ameaca-elevar-emissao-de-poluentes-em-motor-euro-6.
  34. Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH. Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol. 2013;17(1):53-64. DOI: https://doi.org/10.1111/j.1530-9290.2012.00532.x.
  35. Localiza Fleet S/A. (2023). Electric car or combustion: What is the difference and which is more economical? [Online]. Localiza Fleet. Available from: https://frotas.localiza.com/blog/diferenca-carro-eletrico-e-combustao.
  36. Ajanovic A. Promoting Environmentally Benign Electric Vehicles. Energy Procedia. 2014;57:807–16. DOI: 10.1016/j.egypro.2014.10.289.
  37. Canals Casals L, Martinez-Laserna E, Amante García B, Nieto N. Sustainability analysis of the electric vehicle use in Europe for CO₂ emissions reduction. J Clean Prod. 2016;127:425–37. doi:10.1016/j.jclepro.2016.03.120.
  38. Pimentel CC. Energy transition, environmental governance, and economic policy-making: The RENOVABIO Program as a model of multilateral governance. Rev Videre. 2019;11:171–84. DOI: 10.30612/videre.v11i22.10524.
  39. (2024). Benefits of using ethanol. [Portuguese]. [Online]. NovaCana. Available from: https://www.novacana.com/noticias/beneficios.

Regular Issue Subscription Original Research
Volume 12
Issue 01
Received 13/02/2025
Accepted 15/02/2025
Published 20/02/2025
Publication Time 7 Days


My IP

PlumX Metrics