Enhancing Peptic Ulcer Therapy: Innovations in Mucoadhesive Drug Delivery

Year : 2024 | Volume :11 | Issue : 01 | Page : 62-75
By

Jaydatta Dhakane

Neha Patil

Shruti Adhikari

Himanshu Solanki

Nimisha Vala

  1. PG Scholar SSR. College of Pharmacy Dadra and Nagar Haveli, Daman & Diu India
  2. PG Scholar SSR. College of Pharmacy Dadra and Nagar Haveli, Daman & Diu India
  3. PG Scholar SSR. College of Pharmacy Dadra and Nagar Haveli, Daman & Diu India
  4. Associate Professor SSR. College of Pharmacy Dadra and Nagar Haveli, Daman & Diu India
  5. Sister Tutor Shri Vinoba Bhave College of Nursing Dadra and Nagar Haveli India

Abstract

Peptic ulcer disease is still a sincere gastrointestinal demand makes medication administration difficult because of the harsh and changing stomach environment. This paper investigates the potential of using mucoadhesive drug delivery devices to improve the accuracy and effectiveness of peptic ulcer therapies. Due to the inherent characteristics of mucoadhesive drug delivery systems, localized and sustained drug release is made possible by their extended contact and adherence to the gastrointestinal tract’s mucosal surfaces. These formulations can overcome the drawbacks of traditional administration techniques, such as quick evacuation and short residence times at the ulcer site, by taking use of their sticky qualities. This paper investigates the different mucoadhesive polymers used in peptic ulcer medication distribution, clarifying their adherence, biocompatibility, and formulation methods. Among other polymers, chitosan, alginate, and carbopol have exceptional mucoadhesive properties that allow them to stick to ulcerated mucosa and improve medication retention. The paper also covers the design concepts and developments in mucoadhesive formulations, such as site-specific delivery strategies, nanotechnology-based systems, and innovative drug carriers. These advancements seek to reduce systemic adverse effects, enhance bioavailability, and optimize medication release kinetics. We examine published studies and commercial formulations on mucoadhesive drug delivery devices for the treatment of peptic ulcers. This article’s conclusion emphasizes the revolutionary significance mucoadhesive drug delivery methods play in the treatment of peptic ulcers. It highlights their ability to get around delivery issues, improve therapeutic results, and perhaps transform treatment modalities for this common gastrointestinal illness.

Keywords: Peptic Ulcer, Mucoadhesion, Mucoadhesive Polymers, Design, Application.

[This article belongs to Trends in Drug Delivery(tdd)]

How to cite this article: Jaydatta Dhakane, Neha Patil, Shruti Adhikari, Himanshu Solanki, Nimisha Vala. Enhancing Peptic Ulcer Therapy: Innovations in Mucoadhesive Drug Delivery. Trends in Drug Delivery. 2024; 11(01):62-75.
How to cite this URL: Jaydatta Dhakane, Neha Patil, Shruti Adhikari, Himanshu Solanki, Nimisha Vala. Enhancing Peptic Ulcer Therapy: Innovations in Mucoadhesive Drug Delivery. Trends in Drug Delivery. 2024; 11(01):62-75. Available from: https://journals.stmjournals.com/tdd/article=2024/view=144699




Browse Figures

References

1) Lemos L, Martins T, Tanajura G, et al. Evaluation of antiulcer activity of chromanone fraction from Calophyllum brasiliesnse Camb. J. Ethnopharmacol. 2012;141(1):432-9p.
2) Vimala G, Gricilda S. A review on antiulcer activity of few Indian medicinal plants. Int. J. Microbiol. 2014:1-14p.
3) Amandeep K, Robin S, Ramica S, Sunil K. Peptic ulcer: A review on etiology and pathogenesis. Int Res J Pharm. 2012;3(6):34-8p.
4) Jaiswal F, Rai A, Wal P, Wal A, Singh S. Peptic ulcer: a review on etiology, pathogenesis and treatment. AJPER. 2021;10(4):1p.
5) Lanas A, Chan F. Peptic ulcer disease. Lancet. 2017;390(10094):613-24p.
6) Bandyopadhyay D, Biswas K, Reiter R, Banerjee R. Gastric toxicity and mucosal ulceration induced by oxygen-derived reactive species: protection by melatonin. Curr. Mol. Med. 2001;1(4):501-13p.
7) Higuchi D, Sugawa C, Shah S, Tokioka S, Lucas C. Etiology, treatment, and outcome of esophageal ulcers: a 10-year experience in an urban emergency hospital. JOGS. 2003;7(7):836-42p.
8) Wise L. Peptic ulcer: a reappraisal of its etiology. Ann. R. Coll. Surg. Engl. 1972;50(3):145p.
9) Rennie J, Reade P, Hay K, Scully C. Recurrent aphthous stomatitis. Br. Dent. J. 1985;159(11):361-7p.
10) Najeeb S, Khurshid Z, Zohaib S, et al. Management of recurrent aphthous ulcers using low-level lasers: a systematic review. Medicine. 2016;52(5):263-8p.
11) Shulman J. An exploration of point, annual, and lifetime prevalence in characterizing recurrent aphthous stomatitis in USA children and youths. J. Oral Pathol. 2004;33(9):558-66p.
12) Ship J. Recurrent aphthous stomatitis: an update. Oral Surg. Oral Med. Oral Radiol. 1996;81(2):141-7p.
13) Narayanan M, Reddy K, Marsicano E. Peptic ulcer disease and Helicobacter pylori infection. Missouri medicine. 2018;115(3):219p.
14) Lanas Á, Carrera-Lasfuentes P. Risk of upper and lower gastrointestinal bleeding in patients taking nonsteroidal anti-inflammatory drugs, antiplatelet agents, or anticoagulants. Clin. Gastroenterol. Hepatol. 2015;13(5):906-12p.
15) Huang J, Sridhar S, Hunt R, et al. Role of Helicobacter pylori infection and non-steroidal anti-inflammatory drugs in peptic-ulcer disease: a meta-analysis. Lancet. 2002;359(9300):14-22p.
16) Sung J, Kuipers E, El‐Serag H, et al. Systematic review: the global incidence and prevalence of peptic ulcer disease. Alimentary pharmacology & therapeutics,. ;29(9):938-46p.
17) Lanas A, García‐Rodríguez L. The changing face of hospitalisation due to gastrointestinal bleeding and perforation. AP&T. 2011;33(5):585-91p.
18) Malmi H, Kautiainen H, Virta L, Färkkilä N, Koskenpato J, Färkkilä M. Incidence and complications of peptic ulcer disease requiring hospitalisation have markedly decreased in Finland. AP&T. 2014;39(5):496-506p.
19) Laucirica I, Iglesias P, Calvet X. Peptic ulcer. Medicina Clínica (English Edition). 2023 Sep 11.
20) Shell EJ. Pathophysiology of peptic ulcer disease. Physician Assistant Clinics. 2021;6(4):603-11p.
21) Annunziata G, Sureda A, Orhan I, et al. The neuroprotective effects of polyphenols, their role in innate immunity and the interplay with the microbiota. Neurosci. Biobehav. Rev. 2021;128:437-53p.
22) Malik T, Gnanapandithan K, Singh K. Peptic ulcer disease. national library of medicine.2023;1-5p.
23) Lu C, Chang S, Wang S, Chang F, Lee S. Silent peptic ulcer disease: frequency, factors leading to “silence,” and implications regarding the pathogenesis of visceral symptoms. Gastrointest. Endosc. 2004;60(1):34-8p.
24) Mustafa M, Menon J, Muiandy R, Fredie R, Sein M, Fariz A. Risk factors, diagnosis, and management of peptic ulcer disease. J Dent Med Sci. 2015;14(7):40-6p.
25) Moayyedi P, Talley N, Fennerty M, Vakil N. Can the clinical history distinguish between organic and functional dyspepsia?. Jama. 2006;295(13):1566-76p.
26) Talley N, Vakil N, Practice Parameters Committee of the American College of Gastroenterology. Guidelines for the management of dyspepsia. | ACG. 2005;100(10):2324-37p.
27) Shimoyama T. Stool antigen tests for the management of Helicobacter pylori infection. WJG. 2013;19(45):8188p.
28) Malfertheiner P, Megraud F, O’morain C, et al. Management of Helicobacter pylori infection-the Maastricht IV/Florence consensus report. Gut (English Edition): an international journal of gastroenterology & hepatology. 2012;61(5):646-64p.
29) Chickering D, Mathiowitz E. Definitions, mechanisms, and theories of bioadhesion. Drugs and the pharmaceutical sciences. 1999;98:1-10p.
30) Boddupalli B, Mohammed Z, Nath R, Banji D. Mucoadhesive drug delivery system: An overview. J. Adv. Pharm. Technol. Res. 2010;1(4):381p.
31) Veuillez F, Kalia Y, Jacques Y, Deshusses J, Buri P. Factors and strategies for improving buccal absorption of peptides. Eur. J. Pharm. Biopharm. 2001;51(2):93-109p.
32) Smart J. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev. 2005;57(11):1556-68p.
33) Marriott C, Gregory N. Mucus physiology and pathology. Bioadhesive drug delivery systems. 1990:1-24p.
34) Allen A, Cunliffe W, Pearson J, Venables C. The adherent gastric mucus gel barrier in man and changes in peptic ulceration. J. Intern. Med. 1990;228(S732):83-90p.
35) Kerss S, Allen A, Garner A. A simple method for measuring thickness of the mucus gel layer adherent to rat, frog and human gastric mucosa: influence of feeding, prostaglandin, N-acetylcysteine and other agents. Clin. Sci. 1982;63(2):187-95p.
36) Andrews G, Jones D. Rheological characterization of bioadhesive binary polymeric systems designed as platforms for drug delivery implants. Biomacromolecules. 2006;7(3):899-906p.
37) Smart J. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev. 2005;57(11):1556-68p.
38) Tiwari D, Sause R, Madan PL, Goldman D. Evaluation of polyoxyethylene homopolymers for buccal bioadhesive drug delivery device formulations. AAPS PharmSci. 1999;1:50-7p.
39) Huang Y, Leobandung W, Foss A, Peppas N. Molecular aspects of muco-and bioadhesion:: Tethered structures and site-specific surfaces. JCR. 2000;65(1-2):63-71p.
40) Gu J, Robinson J, Leung S. Binding of acrylic polymers to mucin/epithelial surfaces: structure-property relationships. Crit. Rev. Ther. 1988;5(1):21-67P.
41) Peppas N, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. JCR. 1985;2:257-75p.
42) Solomonidou D, Cremer K, Krumme M, Kreuter J. Effect of carbomer concentration and degree of neutralization on the mucoadhesive properties of polymer films. J. Biomater. Sci. Polym. Ed. 2001;12(11):1191-205P.
43) Mittal K. The role of the interface in adhesion phenomena. Polym Eng Sci. 1977;17(7):467-73p.
44) Naskar S, Roy S, Kuotsu K. Drug delivery based on buccal adhesive systems–A review. Int J Pharm Bio Sci. 2013;4(3):240-56p.
45) Sudheer P. Mucoadhesive polymers: A review. J. Pharm. Res. 2018;17(1):47-55p.
46) Roychowdhury S, Gupta R, Saha S. A review on buccal mucoadhesive drug delivery systems. IGJPS. 2011;1(3):223-33p.
47) Chaudhari V, Sarode S, Sathe B, Vadnere G. Mucoadhesive Buccal Drug Delivery System: A Review. PSM. 2014;5(2):1-10p.
48) Sharma M, Sheeba F, Yadav R, Patel A, Kumar Y. Mucoadhesive polymers for buccal drug delivery system: An overview. AJPRD. 2021;9(2):57-64p.
49) Tangri P, Madhav N. Oral mucoadhesive drug delivery systems: a review. JBI. 2011;2229:7499p.
50) Andrews G, Laverty T, Jones D. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71(3):505-18p.
51) Lohani A, Chaudhary G. Mucoadhesive microspheres: A novel approach to increase gastroretention. Chron. Young Sci. 2012;3(2):121p.
52) Smart J. Theories of mucoadhesion. Mucoadhesive materials and drug delivery systems. 2014:159-74p.
53) Park K, Robinson J. Bioadhesive polymers as platforms for oral-controlled drug delivery: method to study bioadhesion. Int. J. Pharm. 1984;19(2):107-27p.
54) Chatterjee B, Amalina N, Sengupta P, Mandal U. Mucoadhesive polymers and their mode of action: A recent update. J. Appl. Pharm. Sci. 2017;7(5):195-203p.
55) Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Deliv. Rev. 2005;57(11):1595-639p.
56) Rossi S, Bonferoni M, Ferrari F, Caramella C. Drug release and washability of mucoadhesive gels based on sodium carboxymethylcellulose and polyacrylic acid. Pharm. Technol. Int. 1999;4(1):55-63p.
57) Rossi S, Bonferoni M, Ferrari F, Caramella C. Drug release and washability of mucoadhesive gels based on sodium carboxymethylcellulose and polyacrylic acid. Pharm. Dev. Technol. 1999;4(1):55-63p.
58) Portero A, Teijeiro-Osorio D, Alonso M, Remuñán-López C. Development of chitosan sponges for buccal administration of insulin. Carbohydr. Polym. 2007;68(4):617-25p.
59) Lele B, Hoffman A. Insoluble ionic complexes of polyacrylic acid with a cationic drug for use as a mucoadhesive, ophthalmic drug delivery system. J. Biomater. Sci. Polym. Ed. 2000;11(12):1319-31p.
60) Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Deliv. Rev. 2005;57(11):1595-639p.
61) Benedetto D, Shah D, Kaufman H. The instilled fluid dynamics and surface chemistry of polymers in the preocular tear film. IOVS. 1975;14(12):887-902p.
62) Saraswathi B, Balaji A, Umashankar M. Polymers in mucoadhesive drug delivery system-latest updates. Int J Pharm Pharmaceut Sci. 2013;5:423-30p.
63) Alexander A, Ajazuddin M, Swarna M, Sharma M, Tripathi D. Polymers and permeation enhancers: specialized components of mucoadhesives. J. Pharm. Sci. 2011;4(1):91-5p.
64) Sharma D, Singh M, Kumar D, Singh G. Novel paradigms in mucoadhesive drug delivery system. Int J Pharm Sci Res. 2012;3(08):2455-71p.
65) Warren S, Kellaway I. The synthesis and in vitro characterization of the mucoadhesion and swelling of poly (acrylic acid) hydrogels. Pharm. Dev. Technol. 1998;3(2):199-208p.
66) Peppas N, Wood K, Blanchette J. Hydrogels for oral delivery of therapeutic proteins. Expert Opin. Biol. Ther. 2004;4(6):881-7p.
67) Müller R, Jacobs C. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. Int. J. Pharm. 2002;237(1-2):151-61p.
68) Duggan S, Cummins W, O’Donovan O, Hughes H, Owens E. Thiolated polymers as mucoadhesive drug delivery systems. Eur. J. Pharm. Sci. 2017;100:64-78p.
69) Sahlin J, Peppas N. Enhanced hydrogel adhesion by polymer interdiffusion: use of linear poly (ethylene glycol) as an adhesion promoter. J. Biomater. Sci. Polym. Ed. 1997;8(6):421-36p.
70) Järvå M, Hirt H, Dunny G, Berntsson R. Polymer adhesin domains in gram-positive cell surface proteins. Frontiers in Microbiology. 2020;11:599899p.
71) Bologna W, Levine H, Cartier P, De Ziegler D, inventors; Columbia Laboratories (Bermuda) Limited, assignee. Extended release buccal bioadhesive tablet. 2000:2p.
72) Naisbett B, Woodley J. The potential use of tomato lectin for oral drug delivery. 1. Lectin binding to rat small intestine in vitro. Int. J. Pharm. 1994;107(3):223-30p.
73) Bernkop-Schnürch A, Gabor F, Szostak M, Lubitz W. An adhesive drug delivery system based on K99-fimbriae. Eur. J. Pharm. Sci. 1995;3(5):293-9p.
74) Khosla R, Davis S. The effect of polycarbophil on the gastric emptying of pellets. JPP. 1987;39(1):47-9p.
75) Lehr C. Bioadhesion technologies for the delivery of peptide and protein drugs to the gastrointestinal tract. Crit. Rev. Ther. Drug Carr. Syst. 1994;11(2):119-60p.
76) Andrews G, Laverty T, Jones D. Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm. 2009;71(3):505-18p.
77) Lehr C. Lectin-mediated drug delivery: The second generation of bioadhesives. JCR. 2000;65(1-2):19-29p.
78) Yadav V, Gupta A, Kumar R, Yadav J, Kumar B. Mucoadhesive polymers: means of improving the mucoadhesive properties of drug delivery system. J. Chem. Pharm. Res. 2010;2(5):418-32p.
79) Hietanen J, Salo O. Binding of four lectins to normal human oral mucosa. Eur. J. Oral Sci. 1984;92(5):443-7p.
80) Sharma A, Sharma S, Khuller G. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J. Antimicrob. Chemother. 2004;54(4):761-6p.


Regular Issue Subscription Original Research
Volume 11
Issue 01
Received March 16, 2024
Accepted March 29, 2024
Published April 30, 2024