Overview of Recent Advancement of Nano Stent in Pharmaceutical Application

Year : 2024 | Volume :11 | Issue : 01 | Page : 22-44
By

A. Mohamed Sikkander

  1. Associate Professor and Head Velammal Engineering College Tamil Nadu India

Abstract

Interventional cardiology has witnessed remarkable progress with the evolution of nanotechnology, leading to the development of nanostents. Nanostents, characterized by their nanoscale features and innovative materials, have emerged as a cutting-edge solution for addressing the limitations associated with traditional stent technologies. This thorough analysis examines the most recent developments in the design, manufacture, and use of nanostents, emphasizing how they may completely transform vascular interventions. The first section of the review provides an overview of the nonmaterial’s employed in nanostent construction, including biocompatible polymers, advanced alloys, and bioresorbable elements. These materials contribute to enhanced biocompatibility, reduced inflammation, and improved long-term outcomes. The incorporation of nanoscale surface modifications further optimizes the interaction between the nanostent and the vascular environment, promoting quicker endothelialization and minimizing the risk of restenosis. The second part of the review delves into the engineering innovations that have enabled the development of smart nanostents. These devices are equipped with sensors and actuators, allowing for real-time monitoring of vascular conditions and responsive adjustments to optimize therapeutic outcomes. Additionally, the integration of nanotechnology enables precise drug delivery strategies, ensuring targeted and controlled release of pharmaceutical agents to the site of intervention. Clinical studies and preclinical experiments supporting the efficacy and safety of nanostents are systematically reviewed in the third section. Comparative analyses with conventional stents reveal promising results, showcasing the potential of nano stents in reducing complications, such as thrombosis and restenosis, while improving patient outcomes.

Keywords: Nanoscale, Blocked artery, Micro fabrication techniques, Anti-proliferative drugs, Antiproliferative drugs.

[This article belongs to Trends in Drug Delivery(tdd)]

How to cite this article: A. Mohamed Sikkander. Overview of Recent Advancement of Nano Stent in Pharmaceutical Application. Trends in Drug Delivery. 2024; 11(01):22-44.
How to cite this URL: A. Mohamed Sikkander. Overview of Recent Advancement of Nano Stent in Pharmaceutical Application. Trends in Drug Delivery. 2024; 11(01):22-44. Available from: https://journals.stmjournals.com/tdd/article=2024/view=144669




Browse Figures

References

1. Jeewandara TM, Wise SG, Ng MKC. Biocompatibility of Coronary Stents. Materials [Basel]. 2014 Jan 28;7[2]:769-786. doi: 10.3390/ma7020769.
2. Karimi M, Zare H, Bakhshian Nik A, Yazdani N, Hamrang M, Mohamed E, SahandiZangabad P, Moosavi Basri SM, Bakhtiari L, Hamblin MR. Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine [Lond]. 2016;11[5]:513-30. doi: 10.2217/nnm.16.3.
3. Yin RX, Yang DZ, Wu JZ. Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics. 2014 Jan 8;4[2]:175-200. doi: 10.7150/thno.7210.
4. Malik, T.F.; Tivakaran, V.S. Percutaneous Transluminal Coronary Angioplasty [PTCA]; StatPearls: Treasure Island, FL, USA, 2019.
5. Claessen BE, Henriques JP, Jaffer FA, Mehran R, Piek JJ, Dangas GD. Stent thrombosis: a clinical perspective. JACC Cardiovasc Interv. 2014 Oct;7[10]:1081-92. doi: 10.1016/j.jcin.2014.05.016.
6. Alfonso F, Byrne RA, Rivero F, Kastrati A. Current treatment of in-stent restenosis. J Am Coll Cardiol. 2014 Jun 24;63[24]:2659-73. doi: 10.1016/j.jacc.2014.02.545.
7. Wessely R, Schömig A, Kastrati A. Sirolimus and Paclitaxel on polymer-based drug-eluting stents: similar but different. J Am Coll Cardiol. 2006 Feb 21;47[4]:708-14. doi: 10.1016/j.jacc.2005.09.047.
8. Boon GD. An overview of hemostasis. ToxicolPathol. 1993;21[2]:170-9. doi: 10.1177/019262339302100209.
9. Andersen H, Greenberg DL, Fujikawa K, Xu W, Chung DW, Davie EW. Protease-activated receptor 1 is the primary mediator of thrombin-stimulated platelet procoagulant activity. Proc Natl Acad Sci U S A. 1999 Sep 28;96[20]:11189-93. doi: 10.1073/pnas.96.20.11189.
10. Mohammad SF, Anderson WH, Smith JB, Chuang HY, Mason RG. Effects of heparin on platelet aggregation and release and thromboxane A2 production. Am J Pathol. 1981 Aug;104[2]:132-41.
11. Karimzadeh Jouzdani, M., Karimzadeh Jouzdani, M., & Mohebbi, B. [2021]. The Role of Inflammatory Biomarkers in Predicting in-Stent Restenosis. Journal of Medicinal and Chemical Sciences, 4[6], 635-645. doi: 10.26655/JMCHEMSCI.2021.6.12
12. Milani Fard, A. M., & Milani Fard, M. [2022]. Evaluation of Office Stones in Kidney Patients and How to form and Treat Them. Eurasian Journal of Science and Technology, 2[2], 111-125. doi: 10.22034/EJST.2022.2.1
13. Ahmadi, A., Ghanbari, H., Salem, M. M., Milani Fard, A. M., & Barkhordari, K. [2022]. The Outcome of the Correction of Anterior Vocal Cord Web by Flap Technique using Real Anterior Vocal Cord Base in Frontolateral Laryngectomy in Patients with Glottis Cancer. Eurasian Journal of Science and Technology, 2[4], 262-267. doi: 10.22034/EJST.2022.4.4
14. Dousti, M., Alizadeh Otaghvar, H., Jafarian, A., Rokhzadi, I., Mazhari, N., & Moghaddam, S. [2021]. Evaluation of the Effect of Gummy Candy on Postoperative Ileus and Its Complications. Journal of Medicinal and Chemical Sciences, 4[6], 579-585. doi: 10.26655/JMCHEMSCI.2021.6.6
15. Najdsepas, H., Rahimzadeh, N., haghighikian, M., Maddahali, M., & Milani Fard, M. [2022]. Comparison of Catheter Functionality and Post-Procedural Consequences in Vascular Access Through Saphenofemoral Cutdown and Percutaneus Jugu-lar Vein Catheterization among Children and Neonates. Eurasian Journal of Science and Technology, 2[3], 176-184. doi: 10.22034/EJST.2022.2.6
16. Dahlbäck, B. Progress in the understanding of the protein C anticoagulant pathway. Int J Hematol 79, 109–116 [2004]. https://doi.org/10.1532/IJH97.03149
17. WRIGHT IS. The nomenclature of blood clotting factors. Can Med Assoc J. 1962 Feb 24;86[8]:373-4.
18. Eilertsen KE, Østerud B. Tissue factor: [patho]physiology and cellular biology. Blood Coagul Fibrinolysis. 2004 Oct;15[7]:521-38. doi: 10.1097/00001721-200410000-00001.
19. Lüscher TF, Steffel J, Eberli FR, Joner M, Nakazawa G, Tanner FC, Virmani R. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation. 2007 Feb 27;115[8]:1051-8. doi: 10.1161/CIRCULATIONAHA.106.675934.
20. Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008 Feb 21;451[7181]:914-8. doi: 10.1038/nature06797.
21. Inoue T, Croce K, Morooka T, Sakuma M, Node K, Simon DI. Vascular inflammation and repair: implications for re-endothelialization, restenosis, and stent thrombosis. JACC Cardiovasc Interv. 2011 Oct;4[10]:1057-66. doi: 10.1016/j.jcin.2011.05.025.
22. Gori T, Polimeni A, Indolfi C, Räber L, Adriaenssens T, Münzel T. Predictors of stent thrombosis and their implications for clinical practice. Nat Rev Cardiol. 2019 Apr;16[4]:243-256. doi: 10.1038/s41569-018-0118-5.
23. Padmanabhan J, Kyriakides TR. Nanomaterials, inflammation, and tissue engineering. Wiley Interdiscip Rev NanomedNanobiotechnol. 2015 May-Jun;7[3]:355-70. doi: 10.1002/wnan.1320.
24. Hitesh Chopra, Shabana Bibi, Awdhesh Kumar Mishra, Vineet Tirth, Sree Vandana Yerramsetty, Sree Varshini Murali, Syed Umair Ahmad, Yugal Kishore Mohanta, Mohamed S. Attia, Ali Algahtani, Fahadul Islam, Abdul Hayee, Saiful Islam, Atif Amin Baig, Talha Bin Emran, “Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases”, Journal of Nanomaterials, vol. 2022, Article ID 4155729, 25 pages, 2022. https://doi.org/10.1155/2022/4155729
25. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017 Dec 14;9[6]:7204-7218. doi: 10.18632/oncotarget.23208.
26. Ansar W, Ghosh S. C-reactive protein and the biology of disease. Immunol Res. 2013 May;56[1]:131-42. doi: 10.1007/s12026-013-8384-0..
27. Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010 Mar 19;140[6]:771-6. doi: 10.1016/j.cell.2010.03.006.
28. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, Miller AH, Mantovani A, Weyand CM, Barzilai N, Goronzy JJ, Rando TA, Effros RB, Lucia A, Kleinstreuer N, Slavich GM. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019 Dec;25[12]:1822-1832. doi: 10.1038/s41591-019-0675-0.
29. Renz H, Holt PG, Inouye M, Logan AC, Prescott SL, Sly PD. An exposome perspective: Early-life events and immune development in a changing world. J Allergy Clin Immunol. 2017 Jul;140[1]:24-40. doi: 10.1016/j.jaci.2017.05.015.
30. Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM, Stephenson J, Barker M, Saffery R, Yajnik CS, Eckert JJ, Hanson MA, Forrester T, Gluckman PD, Godfrey KM. Origins of lifetime health around the time of conception: causes and consequences. Lancet. 2018 May 5;391[10132]:1842-1852. doi: 10.1016/S0140-6736[18]30312-X.
31. Miller GE, Chen E, Parker KJ. Psychological stress in childhood and susceptibility to the chronic diseases of aging: moving toward a model of behavioral and biological mechanisms. Psychol Bull. 2011 Nov;137[6]:959-97. doi: 10.1037/a0024768.
32. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010 Mar 19;140[6]:871-82. doi: 10.1016/j.cell.2010.02.029.
33. Nounou MI, ElAmrawy F, Ahmed N, Abdelraouf K, Goda S, Syed-Sha-Qhattal H. Breast Cancer: Conventional Diagnosis and Treatment Modalities and Recent Patents and Technologies. Breast Cancer [Auckl]. 2015 Sep 27;9[Suppl 2]:17-34. doi: 10.4137/BCBCR.S29420.
34. Sahoo SK, Parveen S, Panda JJ. The present and future of nanotechnology in human health care. Nanomedicine. 2007 Mar;3[1]:20-31. doi: 10.1016/j.nano.2006.11.008.
35. Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: Current status and future prospects. FASEB J. 2005, 19, 311–330.
36. Malik S, Muhammad K, Waheed Y. Nanotechnology: A Revolution in Modern Industry. Molecules. 2023 Jan 9;28[2]:661. doi: 10.3390/molecules28020661.
37. Patel SK, Janjic JM. Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases. Theranostics. 2015 Jan 1;5[2]:150-72. doi: 10.7150/thno.9476.
38. Yin RX, Yang DZ, Wu JZ. Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics. 2014 Jan 8;4[2]:175-200. doi: 10.7150/thno.7210.
39. Borhani S, Hassanajili S, Ahmadi Tafti SH, Rabbani S. Cardiovascular stents: overview, evolution, and next generation. Prog Biomater. 2018 Sep;7[3]:175-205. doi: 10.1007/s40204-018-0097-y. Epub 2018 Sep 10.
40. Borhani S, Hassanajili S, Ahmadi Tafti SH, Rabbani S. Cardiovascular stents: overview, evolution, and next generation. Prog Biomater. 2018 Sep;7[3]:175-205. doi: 10.1007/s40204-018-0097-y. Epub 2018 Sep 10.
41. Gruntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet. 1978 Feb 4;1[8058]:263. doi: 10.1016/s0140-6736[78]90500-7.
42. Sigwart U, Urban P, Golf S, Kaufmann U, Imbert C, Fischer A, Kappenberger L. Emergency stenting for acute occlusion after coronary balloon angioplasty. Circulation. 1988 Nov;78[5 Pt 1]:1121-7. doi: 10.1161/01.cir.78.5.1121.
43. Palmaz JC, Kopp DT, Hayashi H, Schatz RA, Hunter G, Tio FO, Garcia O, Alvarado R, Rees C, Thomas SC. Normal and stenotic renal arteries: experimental balloon-expandable intraluminal stenting. Radiology. 1987 Sep;164[3]:705-8. doi: 10.1148/radiology.164.3.2956628.
44. Puranik AS, Dawson ER, Peppas NA. Recent advances in drug eluting stents. Int J Pharm. 2013 Jan 30;441[1-2]:665-79. doi: 10.1016/j.ijpharm.2012.10.029.
45. Buccheri D, Piraino D, Andolina G, Cortese B. Understanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatment. J Thorac Dis. 2016 Oct;8[10]:E1150-E1162. doi: 10.21037/jtd.2016.10.93.
46. Hu T, Yang J, Cui K, Rao Q, Yin T, Tan L, Zhang Y, Li Z, Wang G. Controlled Slow-Release Drug-Eluting Stents for the Prevention of Coronary Restenosis: Recent Progress and Future Prospects. ACS Appl Mater Interfaces. 2015 Jun 10;7[22]:11695-712. doi: 10.1021/acsami.5b01993.
47. Ferns GA, Avades TY. The mechanisms of coronary restenosis: insights from experimental models. Int J Exp Pathol. 2000 Apr;81[2]:63-88. doi: 10.1046/j.1365-2613.2000.00143.x.
48. Borhani S, Hassanajili S, Ahmadi Tafti SH, Rabbani S. Cardiovascular stents: overview, evolution, and next generation. Prog Biomater. 2018 Sep;7[3]:175-205. doi: 10.1007/s40204-018-0097-y.
49. Rykowska I, Nowak I, Nowak R. Drug-Eluting Stents and Balloons-Materials, Structure Designs, and Coating Techniques: A Review. Molecules. 2020 Oct 11;25[20]:4624. doi: 10.3390/molecules25204624.
50. Gruntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet. 1978 Feb 4;1[8058]:263. doi: 10.1016/s0140-6736[78]90500-7. PMID: 74678.
51. Palmaz JC, Kopp DT, Hayashi H, Schatz RA, Hunter G, Tio FO, Garcia O, Alvarado R, Rees C, Thomas SC. Normal and stenotic renal arteries: experimental balloon-expandable intraluminal stenting. Radiology. 1987 Sep;164[3]:705-8. doi: 10.1148/radiology.164.3.2956628.
52. Betancourt T, Brannon-Peppas L. Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices. Int J Nanomedicine. 2006;1[4]:483-95. doi: 10.2147/nano.2006.1.4.483.
53. Fox KAA, Metra M, Morais J, Atar D. The myth of ‘stable’ coronary artery disease. Nat Rev Cardiol. 2020 Jan; 17[1]:9-21. doi: 10.1038/s41569-019-0233-y.
54. Mikulewicz M, Chojnacka K. Cytocompatibility of medical biomaterials containing nickel by osteoblasts: a systematic literature review. Biol Trace Elem Res. 2011 Sep; 142[3]:865-89. doi: 10.1007/s12011-010-8798-7.
55. Savage DT, Hilt JZ, Dziubla TD. In Vitro Methods for Assessing Nanoparticle Toxicity. Methods Mol Biol. 2019; 1894:1-29. doi: 10.1007/978-1-4939-8916-4_1.
56. Goel SS, Dilip Gajulapalli R, Athappan G, Philip F, Gupta S, Murat Tuzcu E, Ellis SG, Mishkel G, Kapadia SR. Management of drug eluting stent in-stent restenosis: A systematic review and meta-analysis. Catheter Cardiovasc Interv. 2016 May;87[6]:1080-91. doi: 10.1002/ccd.26151.
57. Yin RX, Yang DZ, Wu JZ. Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics. 2014 Jan 8;4[2]:175-200. doi: 10.7150/thno.7210.
58. Kempin W, Kaule S, Reske T, Grabow N, Petersen S, Nagel S, Schmitz KP, Weitschies W, Seidlitz A. In vitro evaluation of paclitaxel coatings for delivery via drug-coated balloons. Eur J Pharm Biopharm. 2015 Oct;96:322-8. doi: 10.1016/j.ejpb.2015.08.010.
59. Kraitzer A, Kloog Y, Zilberman M. Approaches for prevention of restenosis. J Biomed Mater Res B Appl Biomater. 2008 May;85[2]:583-603. doi: 10.1002/jbm.b.30974.
60. Zheng, Fenfen, Xiong, Weiwei, Sun, Shasha, Zhang, Penghui and Zhu, Jun Jie. “Recent advances in drug release monitoring” Nanophotonics, vol. 8, no. 3, 2019, pp. 391-413. https://doi.org/10.1515/nanoph-2018-0219
61. Hu T, Yang J, Cui K, Rao Q, Yin T, Tan L, Zhang Y, Li Z, Wang G. Controlled Slow-Release Drug-Eluting Stents for the Prevention of Coronary Restenosis: Recent Progress and Future Prospects. ACS Appl Mater Interfaces. 2015 Jun 10;7[22]:11695-712. doi: 10.1021/acsami.5b01993.
62. Torrado J, Buckley L, Durán A, Trujillo P, Toldo S, Valle Raleigh J, Abbate A, Biondi-Zoccai G, Guzmán LA. Restenosis, Stent Thrombosis, and Bleeding Complications: Navigating Between Scylla and Charybdis. J Am Coll Cardiol. 2018 Apr 17;71[15]:1676-1695. doi: 10.1016/j.jacc.2018.02.023.
63. Iqbal J, Chamberlain J, Francis SE, Gunn J. Role of Animal Models in Coronary Stenting. Ann Biomed Eng. 2016 Feb;44[2]:453-65. doi: 10.1007/s10439-015-1414-4.
64. Abbasnezhad N, Zirak N, Champmartin S, Shirinbayan M, Bakir F. An Overview of In Vitro Drug Release Methods for Drug-Eluting Stents. Polymers [Basel]. 2022 Jul 5;14[13]:2751. doi: 10.3390/polym14132751
65. Sun D, Zheng Y, Yin T, Tang C, Yu Q, Wang G. Coronary drug-eluting stents: from design optimization to newer strategies. J Biomed Mater Res A. 2014 May;102[5]:1625-40. doi: 10.1002/jbm.a.34806.
66. Wang PJ, Ferralis N, Conway C, Grossman JC, Edelman ER. Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proc Natl Acad Sci U S A. 2018 Mar 13;115[11]:2640-2645. doi: 10.1073/pnas.1716420115.
67. Bozsak F, Chomaz JM, Barakat AI. Modeling the transport of drugs eluted from stents: physical phenomena driving drug distribution in the arterial wall. Biomech Model Mechanobiol. 2014 Apr;13[2]:327-47. doi: 10.1007/s10237-013-0546-4.
68. Garg S, Serruys PW. Coronary stents: current status. J Am Coll Cardiol. 2010 Aug 31;56[10 Suppl]:S1-42. doi: 10.1016/j.jacc.2010.06.007.
69. Premer C, Kanelidis AJ, Hare JM, Schulman IH. Rethinking Endothelial Dysfunction as a Crucial Target in Fighting Heart Failure. Mayo Clin Proc Innov Qual Outcomes. 2019 Feb 26; 3[1]:1-13. doi: 10.1016/j.mayocpiqo.2018.12.006.
70. Kim SM, Park KS, Lih E, Hong YJ, Kang JH, Kim IH, Jeong MH, Joung YK, Han DK. Fabrication and characteristics of dual functionalized vascular stent by spatio-temporal coating. Acta Biomater. 2016 Jul 1;38:143-52. doi: 10.1016/j.actbio.2016.04.029.
71. Smith, B.R., Edelman, E.R. Nanomedicines for cardiovascular disease. Nat Cardiovasc Res 2, 351–367 [2023]. https://doi.org/10.1038/s44161-023-00232-y
72. Puranik AS, Dawson ER, Peppas NA. Recent advances in drug eluting stents. Int J Pharm. 2013 Jan 30;441[1-2]:665-79. doi: 10.1016/j.ijpharm.2012.10.029.
73. Patra, J.K., Das, G., Fraceto, L.F. et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16, 71 [2018]. https://doi.org/10.1186/s12951-018-0392-8
74. Saleh, Y., Gepreel, M. & Allam, N. Functional Nanoarchitectures For Enhanced Drug Eluting Stents. Sci Rep 7, 40291 [2017]. https://doi.org/10.1038/srep40291
75. Buccheri D, Piraino D, Andolina G, Cortese B. Understanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatment. J Thorac Dis. 2016 Oct;8[10]:E1150-E1162. doi: 10.21037/jtd.2016.10.93.
76. Wilson, S., Mone, P., Kansakar, U. et al. Diabetes and restenosis. Cardiovasc Diabetol 21, 23 [2022]. https://doi.org/10.1186/s12933-022-01460-5
77. Javaid Iqbal, Julian Gunn, Patrick W. Serruys, Coronary stents: historical development, current status and future directions, British Medical Bulletin, Volume 106, Issue 1, June 2013, Pages 193–211, https://doi.org/10.1093/bmb/ldt009
78. Bassous N, Cooke JP, Webster TJ. Enhancing Stent Effectiveness with Nanofeatures. Methodist Debakey Cardiovasc J. 2016 Sep;12[3]:163-168. doi: 10.14797/mdcj-12-3-163.
79. Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio. 2022 Jul 19;16:100368. doi: 10.1016/j.mtbio.2022.100368.
80. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020 Mar 3;141[9]:e139-e596. doi: 10.1161/CIR.0000000000000757.
81. Beshchasna N, Saqib M, Kraskiewicz H, Wasyluk Ł, Kuzmin O, Duta OC, Ficai D, Ghizdavet Z, Marin A, Ficai A, Sun Z, Pichugin VF, Opitz J, Andronescu E. Recent Advances in Manufacturing Innovative Stents. Pharmaceutics. 2020 Apr 13;12[4]:349. doi: 10.3390/pharmaceutics12040349.
82. Haben C, Park WM, Bena JF, Parodi FE, Lyden SP. Improving midterm results justify the continued use of bare-metal stents for endovascular therapy for chronic mesenteric ischemia. J Vasc Surg. 2020 Jan;71[1]:111-120. doi: 10.1016/j.jvs.2019.01.094.
83. Chen, Y., Gao, P., Huang, L. et al. A tough nitric oxide-eluting hydrogel coating suppresses neointimal hyperplasia on vascular stent. Nat Commun 12, 7079 [2021]. https://doi.org/10.1038/s41467-021-27368-4
84. Claessen BE, Henriques JP, Jaffer FA, Mehran R, Piek JJ, Dangas GD. Stent thrombosis: a clinical perspective. JACC Cardiovasc Interv. 2014 Oct;7[10]:1081-92. doi: 10.1016/j.jcin.2014.05.016.
85. Tsai ML, Hsieh MJ, Chen CC, Chang SH, Wang CY, Chen DY, Yang CH, Yeh JK, Ho MY, Hsieh IC. Comparison of 9-Month Angiographic Follow-Up and Long-Term Clinical Outcomes of Biodegradable Polymer Drug-Eluting Stents and Second-Generation Durable Polymer Drug-Eluting Stents in Patients Undergoing Single Coronary Artery Stenting. Acta Cardiol Sin. 2020 Mar;36[2]:97-104. doi: 10.6515/ACS.202003_36[2].
86. De Luca G, Smits P, Hofma SH, Di Lorenzo E, Vlachojannis GJ, Van’t Hof AWJ, van Boven AJ, Kedhi E, Stone GW, Suryapranata H; Drug-Eluting Stent in Primary Angioplasty [DESERT 3] cooperation. Everolimus eluting stent vs first generation drug-eluting stent in primary angioplasty: A pooled patient-level meta-analysis of randomized trials. Int J Cardiol. 2017 Oct 1; 244:121-127. doi: 10.1016/j.ijcard.2017.06.022.
87. Torii S, Jinnouchi H, Sakamoto A, Mori H, Park J, Amoa FC, Sawan M, Sato Y, Cornelissen A, Kuntz SH, Kutyna M, Paek KH, Fernandez R, Braumann R, Mont EK, Surve D, Romero ME, Kolodgie FD, Virmani R, Finn AV. Vascular responses to coronary calcification following implantation of newer-generation drug-eluting stents in humans: impact on healing. Eur Heart J. 2020 Feb 1;41[6]:786-796. doi: 10.1093/eurheartj/ehz850.
88. Yue R, Niu J, Li Y, Ke G, Huang H, Pei J, Ding W, Yuan G. In vitro cytocompatibility, hemocompatibility and antibacterial properties of biodegradable Zn-Cu-Fe alloys for cardiovascular stents applications. Mater Sci Eng C Mater Biol Appl. 2020 Aug; 113:111007. doi: 10.1016/j.msec.2020.111007.
89. Beshchasna N, Saqib M, Kraskiewicz H, Wasyluk Ł, Kuzmin O, Duta OC, Ficai D, Ghizdavet Z, Marin A, Ficai A, Sun Z, Pichugin VF, Opitz J, Andronescu E. Recent Advances in Manufacturing Innovative Stents. Pharmaceutics. 2020 Apr 13;12[4]:349. doi: 10.3390/pharmaceutics12040349.
90. Omar WA, Kumbhani DJ. The Current Literature on Bioabsorbable Stents: a Review. CurrAtheroscler Rep. 2019 Nov 25;21[12]:54. doi: 10.1007/s11883-019-0816-4.
91. Sotomi Y, Onuma Y, Collet C, Tenekecioglu E, Virmani R, Kleiman NS, Serruys PW. Bioresorbable Scaffold: The Emerging Reality and Future Directions. Circ Res. 2017 Apr 14;120[8]:1341-1352. doi: 10.1161/CIRCRESAHA.117.310275.
92. Wang, Y., Zhai, W., Cheng, S. et al. Surface-functionalized design of blood-contacting biomaterials for preventing coagulation and promoting hemostasis. Friction 11, 1371–1394 [2023]. https://doi.org/10.1007/s40544-022-0710-x
93. Wang, C., He, T., Zhou, H. et al. Artificial intelligence enhanced sensors – enabling technologies to next-generation healthcare and biomedical platform. Bioelectron Med 9, 17 [2023]. https://doi.org/10.1186/s42234-023-00118-1
94. Lin W, Zhang H, Zhang W, Qi H, Zhang G, Qian J, Li X, Qin L, Li H, Wang X, Qiu H, Shi X, Zheng W, Zhang D, Gao R, Ding J. In vivo degradation and endothelialization of an iron bioresorbable scaffold. Bioact Mater. 2020 Oct 12;6[4]:1028-1039. doi: 10.1016/j.bioactmat.2020.09.020.
95. L’Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NA, Kyles AE, Gregory CR, Hoyt G, Robbins RC, McAllister TN. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med. 2006 Mar;12[3]:361-5. doi: 10.1038/nm1364. Epub 2006 Feb 19.
96. Im SH, Jung Y, Kim SH. Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomater. 2017 Sep 15;60:3-22. doi: 10.1016/j.actbio.2017.07.019.
97. Hoare D, Bussooa A, Neale S, Mirzai N, Mercer J. The Future of Cardiovascular Stents: Bioresorbable and Integrated Biosensor Technology. Adv Sci [Weinh]. 2019 Aug 19;6[20]:1900856. doi: 10.1002/advs.201900856.
98. Li J, Long Y, Yang F, Wei H, Zhang Z, Wang Y, Wang J, Li C, Carlos C, Dong Y, Wu Y, Cai W, Wang X. Multifunctional Artificial Artery from Direct 3D Printing with Built-In Ferroelectricity and Tissue-Matching Modulus for Real-Time Sensing and Occlusion Monitoring. Adv Funct Mater. 2020 Sep 24;30[39]:2002868. doi: 10.1002/adfm.202002868.
99. Vahabli E, Mann J, Heidari BS, Lawrence-Brown M, Norman P, Jansen S, De-Juan-Pardo E, Doyle B. The Technological Advancement to Engineer Next-Generation Stent-Grafts: Design, Material, and Fabrication Techniques. Adv Healthc Mater. 2022 Jul;11[13]:e2200271. doi: 10.1002/adhm.202200271.
100. El-Safty SA, Shenashen MA. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio. 2020 Feb 14;5:100044. doi: 10.1016/j.mtbio.2020.100044.
101. Khalaj R, Tabriz AG, Okereke MI, Douroumis D. 3D printing advances in the development of stents. Int J Pharm. 2021 Nov 20;609:121153. doi: 10.1016/j.ijpharm.2021.121153.
102. Yeazel TR, Becker ML. Advancing Toward 3D Printing of Bioresorbable Shape Memory Polymer Stents. Biomacromolecules. 2020 Oct 12;21[10]:3957-3965. doi: 10.1021/acs.biomac.0c01082.
103. Zhang C, Cai D, Liao P, Su JW, Deng H, Vardhanabhuti B, Ulery BD, Chen SY, Lin J. 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater. 2021 Mar 1;122:101-110. doi: 10.1016/j.actbio.2020.12.042.
104. Bowen PK, Shearier ER, Zhao S, Guillory RJ 2nd, Zhao F, Goldman J, Drelich JW. Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys. Adv Healthc Mater. 2016 May;5[10]:1121-40. doi: 10.1002/adhm.201501019.
105. Mostaed E, Sikora-Jasinska M, Drelich JW, Vedani M. Zinc-based alloys for degradable vascular stent applications. Acta Biomater. 2018 Apr 15;71:1-23. doi: 10.1016/j.actbio.2018.03.005. Epub 2018 Mar 10.
106. Camasão DB, Mantovani D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater Today Bio. 2021 Mar 7;10:100106. doi: 10.1016/j.mtbio.2021.100106.
107. Sensini A, Gualandi C, Focarete ML, Belcari J, Zucchelli A, Boyle L, Reilly GC, Kao AP, Tozzi G, Cristofolini L. Multiscale hierarchical bioresorbable scaffolds for the regeneration of tendons and ligaments. Biofabrication. 2019 Jun 12;11[3]:035026. doi: 10.1088/1758-5090/ab20ad.
108. Bangalore S, Bezerra HG, Rizik DG, Armstrong EJ, Samuels B, Naidu SS, Grines CL, Foster MT, Choi JW, Bertolet BD, Shah AP, Torguson R, Avula SB, Wang JC, Zidar JP, Maksoud A, Kalyanasundaram A, Yakubov SJ, Chehab BM, Spaedy AJ, Potluri SP, Caputo RP, Kondur A, Merritt RF, Kaki A, Quesada R, Parikh MA, Toma C, Matar F, DeGregorio J, Nicholson W, Batchelor W, Gollapudi R, Korngold E, Sumar R, Chrysant GS, Li J, Gordon JB, Dave RM, Attizzani GF, Stys TP, Gigliotti OS, Murphy BE, Ellis SG, Waksman R. The State of the Absorb Bioresorbable Scaffold: Consensus From an Expert Panel. JACC Cardiovasc Interv. 2017 Dec 11;10[23]:2349-2359. doi: 10.1016/j.jcin.2017.09.041.
109. Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio. 2022 Jul 19; 16:100368. doi: 10.1016/j.mtbio.2022.100368.
110. Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med. 1987 Mar 19;316[12]:701-6. doi: 10.1056/NEJM198703193161201.
111. Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med. 1994 Aug 25;331[8]:496-501. doi: 10.1056/NEJM199408253310802.
112. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med. 1994 Aug 25;331[8]:489-95. doi: 10.1056/NEJM199408253310801.
113. Nobuyoshi M, Kimura T, Nosaka H, Mioka S, Ueno K, Yokoi H, Hamasaki N, Horiuchi H, Ohishi H. Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients. J Am Coll Cardiol. 1988 Sep;12[3]:616-23. doi: 10.1016/s0735-1097[88]80046-9.
114. Serruys PW, Luijten HE, Beatt KJ, et al. Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon: a quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation.1988; 77:361–371.
115. Kimura T, Yokoi H, Nakagawa Y, et al. Three- year follow-up after implantation of metallic coronary-artery stents. N Engl J Med.1996; 334:561–566.
116. Van der Giessen WJ, Lincoff AM, Schwartz RS, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary artery. Circulation.1996; 94:1690–1697.
117. Lincoff AM, Furst JG, Ellis SG, et al. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J Am Coll Cardiol.1997; 29:808–816.
118. Yamawaki T, Shimokawa H, Kozai T, et al. Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo. J Am Coll Cardiol.1998; 32:780–786.
119. Murphy JG, Schwartz RS, Edwards WD, et al. Percutaneous polymeric stents in porcine coronary arteries: initial experience with polyethylene terephthalate stent. Circulation.1992; 86:1596–1604.
120. Karas SP, Gravanis MB, Santonian EC, et al. Coronary intimal proliferation after balloon injury and stenting in swine: an animal model of restenosis. J Am Coll Cardiol.1992; 20:467–474.
121. Tamai H, Igaki K, Tsuji T, et al. A biodegradable poly-l-lactic acid coronary stent in porcine coronary artery. J Interv Cardiol.1999; 12:443–450.
122. Currier JW, Faxon DP. Restenosis after percutaneous transluminal coronary angioplasty: have we been aiming at the wrong target? J Am Coll Cardiol.1995; 25:516–520.
123. Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Wong C, Hong MK, Kovach JA, Leon MB. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation. 1996 Jul 1;94[1]:35-43. doi: 10.1161/01.cir.94.1.35.
124. Lansky AJ, Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Baim DS, Kuntz RE, Simonton C, Bersin RM, Hinohara T, Fitzgerald PJ, Leon MB. Remodeling after directional coronary atherectomy [with and without adjunct percutaneous transluminal coronary angioplasty]: a serial angiographic and intravascular ultrasound analysis from the Optimal Atherectomy Restenosis Study. J Am Coll Cardiol. 1998 Aug;32[2]:329-37. doi: 10.1016/s0735-1097[98]00245-9.
125. Schakenraad JM, Oosterbaan JA, Nieuwenhuis P, Molenaar I, Olijslager J, Potman W, Eenink MJ, Feijen J. Biodegradable hollow fibres for the controlled release of drugs. Biomaterials. 1988 Jan;9[1]:116-20. doi: 10.1016/0142-9612[88]90082-8
126. Schakenraad JM, Hardonk MJ, Feijen J, Molenaar I, Nieuwenhuis P. Enzymatic activity toward poly [L-lactic acid] implants. J Biomed Mater Res. 1990 May;24[5]:529-45. doi: 10.1002/jbm.820240502.
127. Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci. 2011;12[7]:4250-70. doi: 10.3390/ijms12074250.
128. Rykowska, I.; Nowak, I.; Nowak, R. Drug-Eluting Stents and Balloons—Materials, Structure Designs, and Coating Techniques: A Review. Molecules 2020, 25, 4624. https://doi.org/10.3390/molecules25204624
129. Beshchasna N, Saqib M, Kraskiewicz H, Wasyluk Ł, Kuzmin O, Duta OC, Ficai D, Ghizdavet Z, Marin A, Ficai A, Sun Z, Pichugin VF, Opitz J, Andronescu E. Recent Advances in Manufacturing Innovative Stents. Pharmaceutics. 2020 Apr 13;12[4]:349. doi: 10.3390/pharmaceutics12040349.
130. Wang L, Jiao L, Pang S, Yan P, Wang X, Qiu T. The Development of Design and Manufacture Techniques for Bioresorbable Coronary Artery Stents. Micromachines [Basel]. 2021 Aug 20;12[8]:990. doi: 10.3390/mi12080990.
131. McDowell G, Slevin M, Krupinski J. Nanotechnology for the treatment of coronary in stent restenosis: a clinical perspective. Vasc Cell. 2011 Apr 18;3[1]:8. doi: 10.1186/2045-824X-3-8.
132. Bassous N, Cooke JP, Webster TJ. Enhancing Stent Effectiveness with Nanofeatures. Methodist Debakey Cardiovasc J. 2016 Sep;12[3]:163-168. doi: 10.14797/mdcj-12-3-163.
133. Yin RX, Yang DZ, Wu JZ. Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics. 2014 Jan 8;4[2]:175-200. doi: 10.7150/thno.7210.
134. Cherian AM, Nair SV, Maniyal V, Menon D. Surface engineering at the nanoscale: A way forward to improve coronary stent efficacy. APL Bioeng. 2021 Jun 1;5[2]:021508. doi: 10.1063/5.0037298.
135. Smith, B.R., Edelman, E.R. Nanomedicines for cardiovascular disease. Nat Cardiovasc Res 2, 351–367 [2023]. https://doi.org/10.1038/s44161-023-00232-y
136. Sahoo J, Sarkhel S, Mukherjee N, Jaiswal A. Nanomaterial-Based Antimicrobial Coating for Biomedical Implants: New Age Solution for Biofilm-Associated Infections. ACS Omega. 2022 Dec 10;7[50]:45962-45980. doi: 10.1021/acsomega.2c06211.
137. Bassous N, Cooke JP, Webster TJ. Enhancing Stent Effectiveness with Nanofeatures. Methodist Debakey Cardiovasc J. 2016 Sep;12[3]:163-168. doi: 10.14797/mdcj-12-3-163.
138. Raikar AS, Priya S, Bhilegaonkar SP, Somnache SN, Kalaskar DM. Surface Engineering of Bioactive Coatings for Improved Stent Hemocompatibility: A Comprehensive Review. Materials [Basel]. 2023 Oct 29;16[21]:6940. doi: 10.3390/ma16216940.
139. Cherian AM, Nair SV, Maniyal V, Menon D. Surface engineering at the nanoscale: A way forward to improve coronary stent efficacy. APL Bioeng. 2021 Jun 1;5[2]:021508. doi: 10.1063/5.0037298.
140. Hidehiko Hara, Masato Nakamura, Julio C. Palmaz, Robert S. Schwartz,Role of stent design and coatings on restenosis and thrombosis,Advanced Drug Delivery Reviews,Volume 58, Issue 3,2006,Pages 377-386,ISSN 0169-409X, https://doi.org/10.1016/j.addr.2006.01.022
141. Govindarajan, T.; Shandas, R. A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent Devices. Polymers 2014, 6, 2309-2331. https://doi.org/10.3390/polym6092309
142. Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials [Basel]. 2022 Dec 19;12[24]:4494. doi: 10.3390/nano12244494.
143. Bassous N, Cooke JP, Webster TJ. Enhancing Stent Effectiveness with Nanofeatures. Methodist Debakey Cardiovasc J. 2016 Sep;12[3]:163-168. doi: 10.14797/mdcj-12-3-163.
144. Tewabe A, Abate A, Tamrie M, Seyfu A, Abdela Siraj E. Targeted Drug Delivery – From Magic Bullet to Nanomedicine: Principles, Challenges, and Future Perspectives. J MultidiscipHealthc. 2021 Jul 5; 14:1711-1724. doi: 10.2147/JMDH.S313968.
145. Mitchell, M.J., Billingsley, M.M., Haley, R.M. et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20, 101–124 [2021]. https://doi.org/10.1038/s41573-020-0090-8
146. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018 Jan;26[1]:64-70. doi: 10.1016/j.jsps.2017.10.012.
147. Alghamdi MA, Fallica AN, Virzì N, Kesharwani P, Pittalà V, Greish K. The Promise of Nanotechnology in Personalized Medicine. J Pers Med. 2022 Apr 22;12[5]:673. doi: 10.3390/jpm12050673.
148. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci. 2020 Aug 20; 7:193. doi: 10.3389/fmolb.2020.00193.
149. Fernandez-Fernandez A, Manchanda R, McGoron AJ. Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl BiochemBiotechnol. 2011 Dec;165[7-8]:1628-51. doi: 10.1007/s12010-011-9383-z. Epub 2011 Sep 27.
150. Tewabe A, Abate A, Tamrie M, Seyfu A, Abdela Siraj E. Targeted Drug Delivery – From Magic Bullet to Nanomedicine: Principles, Challenges, and Future Perspectives. J MultidiscipHealthc. 2021 Jul 5; 14:1711-1724. doi: 10.2147/JMDH.S313968.
151. Sim S, Wong NK. Nanotechnology and its use in imaging and drug delivery [Review]. Biomed Rep. 2021 May;14[5]:42. doi: 10.3892/br.2021.1418.
152. Omidian H, Babanejad N, Cubeddu LX. Nanosystems in Cardiovascular Medicine: Advancements, Applications, and Future Perspectives. Pharmaceutics. 2023 Jul 12;15[7]:1935. doi: 10.3390/pharmaceutics15071935.
153. Patra, J.K., Das, G., Fraceto, L.F. et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16, 71 [2018]. https://doi.org/10.1186/s12951-018-0392-8
154. Patra, J.K., Das, G., Fraceto, L.F. et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16, 71 [2018]. https://doi.org/10.1186/s12951-018-0392-8
155. . Moahamed Sikkander A, Manisankar P, Vedhi C Utilization of sodium montmorillonite clay for enhanced electrochemical sensing of amlodipine,Indian Journal of Chemistry-Section A[IJCA] 55 [5], 571-575DOI: 10.56042/ijca.v55i5.11669
156. Sivakumar, R Gopalakrishnan P, Abdul Razak MS,Comparative analysis of anti-reflection coatings on solar PV cells through TiO2 and SiO2 nanoparticles,Pigment & Resin Technology 51 [2], 171-177.https://doi.org/10.1108/PRT-08-2020-0084
157. Mohamed Sikkander A, Nasri NS., Review on Inorganic Nano crystals unique benchmark of Nanotechnology, Moroccan Journal of Chemistry 1 [2], 1-2 [2013] 47-54. https://doi.org/10.48317/IMIST.PRSM/morjchem-v1i2.1892
158. Mohamed Sikkander A., Bassyouni F, Yasmeen K, Mishra S.R, Lakshmi V.V. Synthesis of Zinc Oxide and Lead Nitrate Nanoparticles and their Applications: Comparative Studies of Bacterial and Fungal [E. coli, A. Niger]. J. Appl. Organomet. Chem., 2023, 3[4], 255-267. https://doi.org/10.48309/JAOC.2023.415886.1115


Regular Issue Subscription Original Research
Volume 11
Issue 01
Received March 7, 2024
Accepted March 29, 2024
Published April 30, 2024