Strategies in Delivery of NSAIDS

Year : 2024 | Volume :11 | Issue : 01 | Page : 45-61
By

Chenna M. Shalini

S. Anila

Rama Rao T.

  1. Associate Professor CMR College of Pharmacy Hyderabad, Telangana India
  2. Research Scholar CMR College of Pharmacy Hyderabad, Telangana India
  3. Principal CMR College of Pharmacy Hyderabad, Telangana India

Abstract

Non-steroidal anti-inflammatory drugs [NSAIDs]. are widely used for the management of pain, inflammation, and fever. However, their effectiveness is often limited by gastrointestinal side effects such as ulceration and bleeding, as well as systemic complications including renal toxicity and cardiovascular risks. To address these challenges, various strategies have been developed to improve the delivery of NSAIDs, aiming to enhance their therapeutic efficacy while minimizing adverse effects. This abstract provides an overview of recent advancements in NSAID delivery systems, including nanoparticle-based formulations, pro drug approaches, and targeted drug delivery strategies. Nanoparticle-based formulations offer advantages such as improved bioavailability, controlled release, and reduced toxicity profiles. Pro drugs of NSAIDs can undergo enzymatic conversion to the active drug at the site of inflammation, thereby minimizing systemic exposure and associated side effects. Targeted drug delivery systems enable site-specific accumulation of NSAIDs, thus maximizing therapeutic efficacy while minimizing off-target effects. Moreover, combination therapies involving NSAIDs and other pharmacological agents have emerged as promising approaches for synergistic effects and improved patient outcomes. Overall, the development of innovative drug delivery strategies holds great promise for optimizing the therapeutic potential of NSAIDs, paving the way for safer and more effective treatment options for patients with inflammatory conditions.

Keywords: Non-steroidal anti-inflammatory, Pro drugs, Controlled release, Synergistic effects, Analgesic medications.

[This article belongs to Trends in Drug Delivery(tdd)]

How to cite this article: Chenna M. Shalini, S. Anila, Rama Rao T.. Strategies in Delivery of NSAIDS. Trends in Drug Delivery. 2024; 11(01):45-61.
How to cite this URL: Chenna M. Shalini, S. Anila, Rama Rao T.. Strategies in Delivery of NSAIDS. Trends in Drug Delivery. 2024; 11(01):45-61. Available from: https://journals.stmjournals.com/tdd/article=2024/view=144633




Browse Figures

References

1. Rivosecchi RM, KellumJA, DastaJF, ArmahizerMJ, BolestaS, Buckley MS, Dzierb AL, Frazee EN, Johnson HJ, Kim C, Murugan R, Smithburger PL, Wong A, Kane Gill SL: Drug class combination associated acute kidney injury. Ann Pharmacother,2016; 50: 953–972, 2016
2. Conaway, D.C [1995]. Using NSAIDs safely in the elderly. Hospital Medicine, 31, 23-34.
3. Vane Tr Ferreira SH [eds].: Anti-inflammatory drugs. New York Sringer -venag 1979:348-83.
4. Tsutsumi, S., Gotoh, T., Tomisato, W. et al. Endoplasmic reticulum stress response is involved in non-steroidal anti-inflammatory drug-induced apoptosis. Cell Death Differ 11, 1009–1016 [2004]. https://doi.org/10.1038/sj.cdd.4401436
5. A. Gupta, M. Bah, NSAIDs in the Treatment of Postoperative Pain, Curr. Pain Headache Rep. 20 [11]. [2016]. 62.
6. P. a W. Budoff, Use of mefenamic acid in the treatment of primary dysmenorrhea, JAMA 241 [25]. [1979]. 2713–2716
7. Harirforoosh S, Jamali F. Renal adverse effects of non-steroidal anti-inflammatory drugs. Expert Opin Drug Saf. 2009; 8[6].:669-81.
8. Knights KM, Winner LK, Elliot DJ, Bowalgaha K, Miners JO. Aldosterone glucuronidation by human liver and kidney microsomes and recombinant UDPglucuronosyltransferases: inhibition by NSAIDs. Britj Clin Pharmacol. 2009; 68[3].:402-12.
9. Ritter JK. Roles of glucuronidation and UDPglucuronosyltransferases in xenobiotic bioactivation reactions. Chemico-biologl interac 2000; 1; 129[1-2].:171-93.
10. Bennett WM, Henrich WL, Stoff JS. The renal effects of non-steroidal anti-inflammatory drugs: summary and recommendations. Am J Kidney Dis. 1996; 28[1 Suppl 1].:S56-62.
11. Essex MN, Zhang RY, Berger MF, Upadhyay S, park PW.Safety of celecoxib compared with placebo and non-selective NSAIDs: cumulative meta-analysis of 89 randomized controlled trials. Expert Opin Drug Safety. 2013;12 [4].:465-77. 15. Segal R, Lubart E, Leibovitz A, Iaina A, Caspi D: Renal effects of low dose aspirin in elderly patients. Isr Med Assoc J 8: 679–682, 2006
12. Segal R, Lubart E, Leibovitz A, Iaina A, Caspi D: Renal effects of low dose aspirin in elderly patients. Isr Med Assoc J 8: 679–682, 2006
13. Whelton A: Nephrotoxicity of non-steroidal anti-inflammatory drugs: Physiologic foundations and clinical implications. Am J Med 1999; 106[5B].: 13S–24S,
14. Jordan S, White J. Non-steroidal anti-inflammatory drugs: clinical issues. NursStand. 2001; 15[23].:4552.
15. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Non-steroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase2 are associated with human gastrointestinal toxicity: a full in vitro analysis. ProcNatlAcadSci USA. 1999;96[13].:7563-8.
16. Jamali F. Pharmacokinetics of enantiomers of chiral non-steroidal anti-inflammatory drugs. Eur J Drug Metab Pharmacokinet.1988; 13[1].:1-9.
17. Mehvar R, Jamali F. Pharmacokinetic analysis of the enantiomeric inversion of chiral non-steroidal anti-inflammatory drugs. Pharm Research. 1988 Feb;5[2].:76-9.
18. Jamali F, Lovlin R, Aberg G. Bi-directional chiral inversion of ketoprofen in CD-1 mice. Chirality. 1997; 9[1].:29-31.
19. Poddubnyy D, Song IH, Sieper J. A systematic comparison of rheumatoid arthritis and ankylosing spondylitis: non-steroidal anti-inflammatory drugs. Clin Exp Rheumatol. 2009; 27[4 Suppl 55].:S148-51 49. McCarberg B, Tenzer P. Complexities in the pharmacologic management of osteoarthritis pain. Current medical research and opinion. 2013 Apr 3.
20. American Society of Hospital P, American Society of Health System P, Teton Data S, Stat!Ref electronic medical l. AHFS drug information. Bethesda, MD: American Society of Health-System Pharmacists, Inc; 2010
21. Nishihara R, Lochhead P, Kuchiba A, Jung S, Yamauchi M, Liao X, et al. Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA. 2013 Jun 26; 309[24].:2563-71.
22. Cote S, Carmichael PH, Verreault R, Lindsay J, Lefebvre J, Laurin D. Non-steroidal anti-inflammatory drug use and the risk of cognitive impairment and Alzheimer’s disease. Alzheimer’s & dementia: J Alzheimer Asso. 2012 May; 8[3].:219-26.
23. Arvanitakis Z, Grodstein F, Bienias JL, Schneider JA, Wilson RS, Kelly JF, et al. Relation of NSAIDs to incident AD, change in cognitive function, and AD pathology. Neurology. 2008; 70[23].:221925.
24. Gutthann SP, García Rodríguez LA, Raiford DS. Individual non-steroidal anti-inflammatory drugs and other risk factors for upper gastrointestinal bleeding and perforation. Epidemiology 1997; 8[1].:18–24.
25. Derry S, Loke YK. Risk of gastrointestinal haemorrhage with long term use of aspirin: meta-analysis. BMJ 2000;321[7270].:1183–7.
26. Weil J, Colin-Jones D, Langman M. Prophylactic aspirin and risk of peptic ulcer bleeding. BMJ 1995; 310[6983].:827-30.
27. Moore N, Vanganse E, Leparc JM. The PAIN study: Paracetamol, Aspirin and Ibuprofen New tolerability study: a large-scale, randomised clinical trial comparing the tolerability of aspirin, ibuprofen and paracetamol for short-term analgesia. Clin Drug Investig 1999; 18[2].:89–98.
28. Moore N, Charlesworth A, Van Ganse E. Risk factors for adverse events in analgesic drug users: results from the PAIN study. Pharmacoepidemiol Drug Saf.2003; 12[7].:601–10.
29. Hippisley-Cox J, Coupland C, Logan R. Risk of adverse gastrointestinal outcomes in patients taking cyclo-oxygenase-2 inhibitors or conventional non-steroidal anti-inflammatory drugs: population based nested case-control analysis. BMJ2005; 331[7528].:1310–16.
30. Moore N, Salvo F, Duong M, Blin P, Pariente A. Cardiovascular risks associated with low-dose ibuprofen and diclofenac as used OTC. Expert Opin Drug Saf 2014; 13[2].:167–79.
31. Advil [ibuprofen]. [package insert]. Madison, NJ: Pfizer Consumer Healthcare; 2012.
32. Summary Minutes of the Joint Arthritis Advisory Committee and Drug Safety and Risk Management Advisory Committee Meeting February 10–11, 2014. Silver Spring, MD: Food and Drug Administration; Center for Drug Evaluation and Research; 2014.
33. Weir MR. Renal effects of nonselective NSAIDs and coxibs. Cleve Clin J Med 2002; 69[Suppl 1].:SI53–8.
34. Farquhar WB, Morgan AL, Zambraski EJ, Kenney WL. Effects of acetaminophen and ibuprofen on renal function in the stressed kidney. J Appl Physiol 1999; 86[2].:598–604.
35. Paterson CA, Jacobs D, Rasmussen S, Youngberg SP, McGuinness N. Randomized, open-label, 5-way crossover study to evaluate the pharmacokinetic/pharmacodynamic interaction between furosemide and the non-steroidal anti-inflammatory drugs diclofenac and ibuprofen in healthy volunteers. Int J Clin Pharmacol Ther 2011; 49[8].:477–90.
36. Weir MR. Renal effects of nonselective NSAIDs and coxibs. Cleve Clin J Med 2002; 69[Suppl 1].:SI69–SI76.
37. Farquhar WB, Morgan AL, Zambraski EJ, Kenney WL. Effects of acetaminophen and ibuprofen on renal function in the stressed kidney. J Appl Physiol 1999; 86[2].:711-7.
38. Greenblatt DJ, Von Moltke LL. Interaction of warfarin with drugs, natural substances, and foods. J Clin Pharmacol 2005;45[2].:127–32.
39. Thijssen HH, Soute BA, Vervoort LM, Claessens JG. Paracetamol [acetaminophen]. warfarin interaction: NAPQI, the toxic metabolite of paracetamol, is an inhibitor of enzymes in the vitamin K cycle. Thromb Haemost 2004; 92[4].:797–802.
40. Mahé I, Caulin C, Bergmann JF. Does paracetamol potentiate the effects of oral anticoagulants: a literature review. Drug Saf 2004; 27[5].:325–33.
41. Catella-Lawson F, Reilly MP, Kapoor SC et al. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N Engl J Med 2001; 345[25].:1809–17.
42. De Abajo FJ, Rodríguez LA, Montero D. Association between selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population based case-control study. BMJ 1999; 319[7217].:1106–9.
43. De Jong JC, van den Berg PB, Tobi H, de Jong-van den Berg LT. Combined use of SSRIs and NSAIDs increases the risk of gastrointestinal adverse effects. Br J Clin Pharmacol 2003;55[6].:
591–5.
44. Schafer AI. Effects of non-steroidal anti-inflammatory drugs onplatelet function and systemic hemostasis. J Clin Pharmacol 1995; 35[3].:209–19
45. Andrade C, Sandarsh S, Chethan KB, Nagesh KS. Serotonin reuptake inhibitor antidepressants and abnormal bleeding: a review for clinicians and a reconsideration of mechanisms. J Clin Psychiatry 2010; 71[12].:1565–75.
46. Methotrexate sodium [package insert]. Lake Zurich, IL: Fresenlus Kabi USA, LLC; 2013.
47. Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, Brater DC. The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis. Eur J Clin Pharmacol 1992; 42[2].:121–5.
48. Haas DA. Adverse drug interactions in dental practice: interactions associated with analgesics, Part III in a series. J Am Dent Assoc 1999; 130[3].:397–407.
49. Egan LJ. Drug interactions in gastroenterology: mechanisms, consequences, and how to avoid. Clin Gastroenterol Hepatol 2004; 2[9].:725–30
50. Murray MD, Black PK, Kuzmik DD et al. Acute and chronic effects of non-steroidal anti-inflammatory drugs on glomerular filtration rate in elderly patients. Am J Med Sci 1995;310[5].:188–97.
51. Li DK, Liu L, Odouli R. Exposure to non-steroidal anti-inflammatory drugs during pregnancy and risk of miscarriage: population based cohort study. BMJ 2003; 327[7411].:368.
52. Majed BH, Khalil RA. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol Rev 2012;64[3].:540–82
53. Piper JM, Ray WA, Daugherty JR, Griffin MR. Corticosteroid use and peptic ulcer disease: role of non-steroidal anti-inflammatory drugs. Ann Intern Med 1991; 114[9].:735–4
54. 54. Haley RM, von Recum HA. Localized and targeted delivery of NSAIDs for treatment of inflammation: A review. Exp Biol Med [Maywood]. 2019 Apr;244[6].:433-444. doi: 10.1177/1535370218787770. Epub 2018 Jul 12. PMID: 29996674; PMCID: PMC6546999.
55. Guo CG, Leung WK. Potential Strategies in the Prevention of Nonsteroidal Anti-inflammatory Drugs-Associated Adverse Effects in the Lower Gastrointestinal Tract. Gut Liver. 2020 Mar 15;14[2].:179-189. doi: 10.5009/gnl19201. PMID: 31547642; PMCID: PMC7096237.
56. Auriemma, Giulia, Andrea Cerciello, and Rita P. Aquino. 2017. ‘NSAIDS: Design and Development of Innovative Oral Delivery Systems’. Nonsteroidal Anti-Inflammatory Drugs. InTech. doi:10.5772/intechopen.68240.
57. Manrique-Moreno, Marcela, Lena Heinbockel, Mario Suwalsky, Patrick Garidel, and Klaus Brandenburg. “Biophysical study of the non-steroidal anti-inflammatory drugs [NSAID]. ibuprofen, naproxen and diclofenac with phosphatidylserine bilayer membranes.” Biochimica et Biophysica Acta [BBA].-Biomembranes 1858, no. 9 [2016].: 2123-2131.
58. Vane, John R., and Regina M. Botting. “Mechanism of action of nonsteroidal anti-inflammatory drugs.” The American journal of medicine 104, no. 3S1 [1998].: 2S-8S.
59. Shi Y, Liu Z, Yang Y, Xu X, Li Y, Li T. Design of poly[mPEGMA-co-MAA]. hydrogel-based mPEG-b-PCL nanoparticles for oral meloxicam delivery. Mater Sci Eng C Mater Biol Appl 2017; 76:975–84
60. Sulistio A, Reyes-Ortega F, D’Souza AM, Ng SMY, Valade D, Quinn JF, Donohue AC, Mansfeld F, Blencowe A, Qiao G, Prankerd R, Quirk S, Whittaker MR, Davis TP, Tait RJ. Precise control of drug loading and release of an NSAID-polymer conjugate for long term osteoarthritis intra-articular drug delivery. J Mater Chem B 2017; 5:6221–6
61. M, Ågårdh L, Larsen S, Rasmussen R, Pallesen J, Mertz N, Kristensen J, Hansen M, Østergaard J, Larsen CS. A prodrug approach involving in situ depot formation to achieve localized and sustained action of diclofenac after joint injection. J Pharm Sci 2014; 103:4021–9
62. Paavola A, Bernards CM, Rosenberg PH. Controlled release ibuprofen-poloxamer gel for epidural use – a pharmacokinetic study using microdialysis in pigs. Eur J Pharm Biopharm 2016; 108:
180–6
63. Wang SH, Liang ZH, Zeng S. Monitoring release of ketoprofen enantiomers from biodegradable poly[d,l-lactide-co-glycolide]. injectable implants. Int J Pharm 2007; 337:102–8
64. Fattahpour S, Shamanian M, Tavakoli N, Fathi M, Sheykhi SR, Fattahpour S. Design and optimization of alginate−chitosan−pluronic nanoparticles as a novel meloxicam drug delivery system. J Appl Polym Sci 2015; 132:1–12
65. Petit A, Sandker M, Müller B, Meyboom R, van Midwoud P, Bruin P, Redout EM, Versluijs-Helder M, van der Lest CHA, Buwalda SJ, de Leede LGJ, Vermonden T, Kok RJ, Weinans H, Hennink WE. Release behavior and intra-articular biocompatibility of celecoxib-loaded acetyl-capped PCLA-PEG-PCLA thermogels. Biomaterials 2014; 35:7919–28 Sep
66. Amrite AC, Ayalasomayajula SP, Cheruvu NPS, Kompella UB. Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest Ophthalmol Vis Sci 2006; 47:1149–60 Mar
67. Saïdi L, Vilela C, Oliveira H, Silvestre AJD, Freire CSR. Poly[N-methacryloyl glycine]./nanocellulose composites as pH-sensitive systems for controlled release of diclofenac. Carbohydr Polym 2017; 169:357–65
68. Melendez Ortiz HI, Díaz Rodríguez P, Alvarez-Lorenzo C, Concheiro A, Bucio E. Binary graft modification of polypropylene for anti‐inflammatory drug-device combo products. J Pharm Sci 2014; 103:1269–77
69. Pang J, Luan Y, Li F, Cai X, Du J, Li Z. Ibuprofen-loaded poly[lactic-co-glycolic acid]. films for controlled drug release. Int J Nanomed 2011; 6:659–65
70. Liu S, Pan G, Liu G, Neves JD, Song S, Chen S, Cheng B, Sun Z, Sarmento B, Cui W, Fan C. Electrospun fibrous membranes featuring sustained release of ibuprofen reduce adhesion and improve neurological function following lumbar laminectomy. J Control Release 2017; 264:1–13
71. Park JW, Yun Y-P, Park K, Lee JY, Kim H-J, Kim SE, Song H-R. Ibuprofen-loaded porous microspheres suppressed the progression of monosodium iodoacetate-induced osteoarthritis in a rat model. Colloids and Surf 2016; 147:265–73
72. Salmoria GV, Paggi RA, Castro F, Roesler CRM, Moterle D, Kanis LA. Development of PCL/Ibuprofen tubes for peripheral nerve regeneration. Procedia CIRP 2016; 49:193–8
73. Paukkonen H, Kunnari M, Laurén P, Hakkarainen T, Auvinen V-V, Oksanen T, Koivuniemi R, Yliperttula M, Laaksonen T. Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. Int J Pharm 2017; 532:269–80
74. Lins LC, Padoin N, Pires ATN, Soares C. Modeling ketoprofen release from PHB/chitosan composite microparticles. Polym Bull 2015; 73:1515
75. Park J-Y, Lee I-H. Controlled release of ketoprofen from electrospun porous polylactic acid [PLA]. nanofibers. J Polym Res 2010; 18:1287–91
76. Macocinschi D, Filip D, Vlad S, Oprea AM, Gafitanu CA. Characterization of a poly[ether urethane].-based controlled release membrane system for delivery of ketoprofen. Appl Surf Sci 2012; 259:416–23
77. Yar M, Farooq A, Shahzadi L, Khan AS, Mahmood N, Rauf A, Chaudhry AA, Ur Rehman I. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications. Mater Sci Eng 2016; 64:148–56
78. Canbolat MF, Celebioglu A, Uyar T. Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers.
79. Colloids Surf B 2014; 115:15–21 Veronese FM, Marsilio F, Caliceti P, De Filippis P, Giunchedi P, Lora S. Polyorganophosphazene microspheres for drug release: polymer synthesis, microsphere preparation, in vitro and in vivo naproxen release. J Control Release 1998; 52:227–37
80. Farooq A, Yar M, Khan AS, Shahzadi L, Siddiqi SA, Mahmood N, Rauf A, Qureshi Z-U-A, Manzoor F, Chaudhry AA, Ur Rehman I. Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration. Mater Sci Eng C Mater Biol Appl 2015; 56:104–13
81. Sidney LE, Heathman TRJ, Britchford ER, Abed A, Rahman CV, Buttery LDK. Investigation of localized delivery of diclofenac sodium from poly[D,L-lactic acid-co-glycolic acid]./poly[ethylene glycol]. scaffolds using an in vitroosteoblast inflammation model. Tissue Eng Part A 2015; 21:362–73 Jan
82. Horvat G, Xhanari K, Finšgar M, Gradišnik L, Maver U, Knez Ž, Novak Z. Novel ethanol-induced pectin-xanthan aerogel coatings for orthopedic applications. Carbohydr Polym 2017; 166:365–76
83. Jia H, Kerr LL. Sustained ibuprofen release using composite poly[lactic-co-glycolic acid]./titanium dioxide nanotubes from Ti implant surface. J Pharm Sci 2013; 102:2341–8
84. Goimil L, Braga MEM, Dias AMA, Gómez-Amoza JL, Concheiro A, Alvarez-Lorenzo C, de Sousa HC, García-González CA. Supercritical processing of starch aerogels and aerogel-loaded poly[ε-caprolactone]. scaffolds for sustained release of ketoprofen for bone regeneration. J CO2 Util 2017; 18:237–49
85. Padmakumar S, Joseph J, Neppalli MH, Mathew SE, Nair SV, Shankarappa SA, Menon D. Electrospun polymeric core-sheath yarns as drug eluting surgical sutures. ACS Appl Mater Interf 2016; 8:6925–34
86. Catanzano O, Acierno S, Russo P, Cervasio M, Del Basso De Caro M, Bolognese A, Sammartino G, Califano L, Marenzi G, Calignano A, Acierno D, Quaglia F. Melt-spun bioactive sutures containing nanohybrids for local delivery of anti-inflammatory drugs. Mater Sci Eng 2014; 43:300–9 Oct
87. Huh BK, Kim BH, Kim S-N, Park CG, Lee SH, Kim KR, Heo CY, Choy YB. Surgical suture braided with a diclofenac-loaded strand of poly[lactic-co-glycolic acid]. for local, sustained pain mitigation. Mater Sci Eng C Mater Biol Appl 2017; 79:209–15 Oct
88. Wang L, Chen D, Sun J. Layer-by-layer deposition of polymeric microgel films on surgical sutures for loading and release of ibuprofen. Langmuir 2009; 25:7990–4
89. Zurita R, Puiggalí J, Rodríguez-Galán A. Loading and release of ibuprofen in multi-and monofilament surgical sutures. Macromol Biosci 2006; 6:767.
90. Lee JE, Park S, Park M, Kim MH, Park CG, Lee SH, Choi SY, Kim BH, Park HJ, Park J-H, Heo CY, Choy YB. Surgical suture assembled with polymeric drug-delivery sheet for sustained, local pain relief. Acta Biomater 2013; 9:8318–27 Sep
91. Wang Z, Wu H, Liao C, Zhou N, Cheng W, Wan Y. Sustained release of ketoprofen from fibrous chitosan-poly[ɛ-caprolactone]. membranes. Carbohydr Polym 2011; 84:624–30
92. Mangindaan D, Chen C-T, Wang M-J. Integrating sol–gel with cold plasmas modified porous polycaprolactone membranes for the drug-release of silver-sulfadiazine and ketoprofen. Appl Surf Sci 2012; 262:114–9
93. Li Z, Kang H, Che N, Liu Z, Li P, Li W, Zhang C, Cao C, Liu R, Huang Y. Controlled release of liposome-encapsulated Naproxen from core-sheath electrospun nanofibers. Carbohydr Polym 2014; 111:18–24
94. Boateng JS, Pawar HV, Tetteh J. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm 2013; 441:181–91 Jan
95. Morgado PI, Miguel SP, Correia IJ, Aguiar-Ricardo A. Ibuprofen loaded PVA/chitosan membranes: a highly efficient strategy towards an improved skin wound healing. Carbohydr Polym 2017; 159:136–45 Mar
96. Djekic L, Martinovic M, Stepanović-Petrović R, Micov A, Tomić M, Primorac M. Formulation of hydrogel-thickened nonionic microemulsions with enhanced percutaneous delivery of ibuprofen assessed in vivo in rats. Eur J Pharm Sci 2016; 92:255–65
97. Ah Y-C, Choi J-K, Choi Y-K, Ki H-M, Bae J-H. A novel transdermal patch incorporating meloxicam: in vitro and in vivo characterization. Int J Pharm 2010; 385:12–9
98. Ahad A, Raish M, Al-Mohizea AM, Al-Jenoobi FI, Alam MA. Enhanced anti-inflammatory activity of carbopol loaded meloxicam nanoethosomes gel. Int J Biol Macromol 2014; 67:99–104
99. Amodwala S, Kumar P, Thakkar HP. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: a patient friendly approach to manage arthritis. Eur J Pharm Sci 2017; 104:114–23
100. Akbari J, Saeedi M, Morteza-Semnani K, Rostamkalaei SS, Asadi M, Asare-Addo K, Nokhodchi A. The design of naproxen solid lipid nanoparticles to target skin layers. Colloids Surf B Biointerf 2016; 145:626–33
101. Akduman C, Özgüney I, Akçakoca Kumbasar EP. Electrospun thermoplastic polyurethane mats containing naproxen–cyclodextrin inclusion complex. Autex Res J 2014; 14:239–46
102. Akduman C, Özgüney I, Kumbasar EPA. Preparation and characterization of naproxen-loaded electrospun thermoplastic polyurethane nanofibers as a drug delivery system. Mater Sci Eng C Mater Biol Appl 2016; 64:383–90
103. Taepaiboon P, Rungsardthong U, Supaphol P. Drug-loaded electrospun mats of poly[vinyl alcohol]. fibres and their release characteristics of four model drugs. Nanotechnology 2006; 17:2317–29
104. Basar AO, Castro S, Torres-Giner S, Lagaron JM, Turkoglu Sasmazel H. Novel poly[ε-caprolactone]./gelatin wound dressings prepared by emulsion electrospinning with controlled release capacity of Ketoprofen anti-inflammatory drug. Mater Sci Eng C 2017; 81:459–68


Regular Issue Subscription Original Research
Volume 11
Issue 01
Received March 18, 2024
Accepted March 29, 2024
Published April 29, 2024