Revolutionizing Gastro-retentive Drug Delivery: Exploring Innovative Formulation Strategies and Mechanisms in Floating in Situ Gel Raft Forming System

Year : 2024 | Volume :11 | Issue : 01 | Page : –
By

    Joel Pratapgadhwala

  1. Dabbu Chauhan

  2. Khushi Chauhan

  3. Manashri Gondhalekar

  4. Dr.Himanshu Solanki

  1. PG Scholar, SSR College of Pharmacy, Daman & Diu, India
  2. PG Scholar, SSR College of Pharmacy, Daman & Diu, India
  3. PG Scholar, SSR College of Pharmacy, Daman & Diu, India
  4. PG Scholar, SSR College of Pharmacy, Daman & Diu, India
  5. Associate Professor, SSR College of Pharmacy, Daman & Diu, India

Abstract

An in-depth exploration of the transformative shift underway in gastro-retentive drug delivery, spotlighting the utilization of Floating Drug Delivery Systems (FDDS) and specifically honing in on the innovative formulation strategies and mechanisms inherent in Floating In Situ Gel Raft Forming Systems. FDDS present a promising avenue for revolutionizing drug delivery efficacy by capitalizing on buoyancy to float atop the gastric fluid surface, thereby extending gastric residence time and improving drug absorption. Particularly noteworthy within the realm of FDDS are raft-forming systems, distinguished by their ability to generate a cohesive gel layer in the stomach, which significantly contributes to the prolonged release kinetics of drugs, ultimately enhancing therapeutic outcomes. This review meticulously examines a spectrum of formulation strategies, encompassing polymer selection and drug incorporation techniques, all aimed at optimizing the performance of FDDS in drug delivery applications. Moreover, the review delves into the intricate mechanisms underlying buoyancy and elucidates the multifaceted factors influencing gastric retention, offering valuable insights into methods for fine-tuning drug release rates and thereby enhancing control over therapeutic outcomes. By comprehensively exploring the development and application of FDDS, this review serves as a foundational cornerstone in advancing the field of gastro-retentive drug delivery. It underscores the pivotal role of innovative formulation approaches in surmounting challenges associated with conventional drug delivery methods and highlights the potential of FDDS to address existing limitations and optimize drug delivery processes, thereby charting a path toward enhanced therapeutic efficacy and improved patient outcomes.

Keywords: GRDDS Approaches, Raft forming mechanism, Migrating myoelectric cycle, Gastric residence time, Polymers.

[This article belongs to Trends in Drug Delivery(tdd)]

How to cite this article: Joel Pratapgadhwala, Dabbu Chauhan, Khushi Chauhan, Manashri Gondhalekar, Dr.Himanshu Solanki.Revolutionizing Gastro-retentive Drug Delivery: Exploring Innovative Formulation Strategies and Mechanisms in Floating in Situ Gel Raft Forming System.Trends in Drug Delivery.2024; 11(01):-.
How to cite this URL: Joel Pratapgadhwala, Dabbu Chauhan, Khushi Chauhan, Manashri Gondhalekar, Dr.Himanshu Solanki , Revolutionizing Gastro-retentive Drug Delivery: Exploring Innovative Formulation Strategies and Mechanisms in Floating in Situ Gel Raft Forming System tdd 2024 {cited 2024 Apr 15};11:-. Available from: https://journals.stmjournals.com/tdd/article=2024/view=143288


References

1) Kumar A, Chanda S, Agarwal S., et al. Formulation and evaluation of gastro-retentive Tinidazole loaded floating microsphere for sustained release. Mater. Today Proc. 2023; 80:1810-1815p.
2) Prajapati VD, Jani GK, Khutliwala TA. et al. Raft forming system: an upcoming approach of gastro retentive drug delivery system. JCR. 2013; 168(2):151-165p.
3) Waterman KC. A critical review of gastric retentive controlled drug delivery. Pharm. Dev. Technol. 2007; 12(1):1-10p.
4) Elliott BM, Steckbeck KE, Murray LR. et al. Rheological investigation of the shear strength, durability, and recovery of alginate rafts formed by antacid medication in varying pH environments. Int. J. Pharm. 2013;457(1):118-123p.
5) Craig BD, Anderson DS, editors. Handbook of corrosion data. ASM international; 1994:10-15p.
6) Elliott BM, Steckbeck KE, Murray LR. et al. Rheological investigation of the shear strength, durability, and recovery of alginate rafts formed by antacid medication in varying pH environments. Int. J. Pharm. 2013;457(1):118-123p.
7) Streubel A, Siepmann J, Bodmeier R. Gastroretentive drug delivery systems. Expert Opin. Drug Deliv.2006;3(2):217-233p.
8) Verma S, Narang N. Development and in vitro evaluation of floating matrix tablets of anti-retroviral drug. Int J Pharm Pharm Sci. 2011;3(1):208-211p.
9) Bechgaard H, Ladefoged K. Gastrointestinal transit time of single-unit tablets. JPP. 1981;33(1):791-792p.
10) Singh BN, Kim KH. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. JCR. 2000 3;63(3):235-259p.
11) Gaur A, Saraswat R. Formulation and evaluation of sodium alginate based in-situ gel drug delivery system of famotidine. Int. J. Pharm. 2011;1(2):99-109p.
12) Kumar A, Verma K, Purohit S. et al. Overview of gastro-retentive drug delivery system. J. Nat. Sci. 2011;2(3):423-436p.
13) Yang L, Fassihi R. Zero‐order release kinetics from a self‐correcting floatable asymmetric configuration drug delivery systemxd. J. Pharm. Sci. 1996;85(2):170-173p.
14) Helliwell M. The use of bioadhesives in targeted delivery within the gastrointestinal tract. Adv. Drug Deliv. Rev. 1993;11(3):221-251p.
15) Sahu VK, Gupta A, Saraf S, Sahu PK. Gastroretentive drug delivery system. Research Gate. 2011:25-32p.
16) Timmermans J, Moës AJ. How well do floating dosage forms float. Int. J. Pharm. 1990;62(2-3):207-216p.
17) Dubernet C. Systemes aliberation gastrique prolongee. Novelles formes medicamenteuses. Editions Medicales International. Editions TEC and DOC. Cachan. 2004:119-33p.
18) Deng F, Bae YH. Lipid raft-mediated and upregulated coordination pathways assist transport of glycocholic acid-modified nanoparticle in a human breast cancer cell line of SK-BR-3. Int. J. Pharm. 2022: 5(17):12-19p.
19) Ali J, Arora S, Ahuja A, et al. Formulation and development of hydrodynamically balanced system for metformin: in vitro and in vivo evaluation. EUR J Pharm Biopharm. 2007;67(1):196-201p.
20) Shah S, Qaqish R, Patel V, et al. Evaluation of the factors influencing stomach‐specific delivery of antibacterial agents for helicobacter pylori infection. JPP. 1999;51(6):667-672P.
21) Arora S, Ali J, Ahuja A, Khar RK, Baboota S. Floating drug delivery systems: a review. Aaps PharmSciTech. 2005; 372-390p.
22) Khosla R, Feely LC, Davis SS. Gastrointestinal transit of non-disintegrating tablets in fed subjects. Int. J. Pharm. 1989;53(2):107-117p.
23) Pandey A, Kumar G, Kothiyal P, et al. A review on current approaches in gastro retentive drug delivery system. Asian j. med. pharm. Sci. 2012;2(4):1-10p.
24) Clarke GM, Newton JM, Short MD. Gastrointestinal transit of pellets of differing size and density. Int. J. Pharm. 1993;100(3):81-92p.
25) Badoni A, Ojha A, Gnanarajan G, Kothiyal P. Review on gastro retentive drug delivery system. Pharma Innov. 2012;1(8):29-32p.
26) Singh BN, Kim KH. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. JCR. 2000;63(3):235-259p.
27) Moes AJ. Gastric retention systems for oral drug delivery. Business Briefing: Pharmatech. 2003:157-159p.
28) Himawan A, Djide NJ, Mardikasari SA, Utami RN, Arjuna A, Donnelly RF, Permana AD. A novel in vitro approach to investigate the effect of food intake on release profile of valsartan in solid dispersion-floating gel in-situ delivery system. Eur. J. Pharm. Sci. 2022;168: 106-110p.
29) Sheth PR, Tossounian J. The hydrodynamically balanced system: a novel drug delivery system for oral use. Drug Dev. Ind. Pharm. 1984;10(2):313-339p.
30) Reddy LH, Murthy RS. Floating dosage systems in drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 2002;19(6):1-10p.
31) Hwang SJ, Park H, Park K. Gastric retentive drug-delivery systems. Crit. Rev. Ther. Drug Carr. Syst. 1998;15(3):1-15p.
32) Ibrahim HK. A novel liquid effervescent floating delivery system for sustained drug delivery. Drug Discov. Today Ther. Strateg. 2009;3(4):25-42.
33) Suresh S, bhaskaran S. Nasal drug delivery: an overview. Indian J. Pharm. Sci. 2005;67(1):19-25p.
34) Kapadia CJ, Mane VB. Raft-forming agents: antireflux formulations. Drug Dev. Ind. Pharm. 2007;33(12):1350-1361p.
35) Brooks WJ. Rafting antacid formulation. Patent US. 1994; (5360793).
36) Davies NM, Farr SJ, Kellaway IW, Taylor G, Thomas M. A comparison of the gastric retention of alginate containing tablet formulations with and without the inclusion of excipient calcium ions. Int. J. Pharm. 1994;105(2):97-101p.
37) Fuchs C. Antacids; their function, formulation and evaluation. D&C. 1949;64(6):692-698p.
38) Grant GT, Morris ER, Rees DA, Smith PJ, Thom D. Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS letters. 1973;32(1):195-198p.
39) Mandlekar SV, Marathe SS, Devarajan PV. A novel raft-forming antacid suspension using a natural dietary fibre. Int. J. Pharm. 1997;148(1):117-121p.
40) Kubo W, Konno Y, Miyazaki S, et al. In situ gelling pectin formulations for oral sustained delivery of paracetamol. Drug Dev. Ind. Pharm. 2004;30(6):593-599p.
41) Wichterle O, Lim D. Hydrophilic gels for biological use. Nature. 1960;185(4706):117-128p.
42) Rathod H, Patel V, Modasia M. In situ gel as a novel approach of gastroretentive drug delivery. Int J Pharm Pharm Sci. 2010;1(8):440-447p.
43) Miyazaki S, Aoyama H, Kawasaki N, et al. In situ-gelling gellan formulations as vehicles for oral drug delivery. JCR. 1999;60(2-3):287-295p.
44) Miyazaki S, Kawasaki N, Kubo W, et al. Comparison of in situ gelling formulations for the oral delivery of cimetidine. Int. J. Pharm. 2001;220(1-2):161-168p.
45) Habibi H, Khosravi-Darani K. Effective variables on production and structure of xanthan gum and its food applications: A review. Biocatal. Agric. Biotechnol. 2017;10:130-140p.
46) Thakur N, Gupta BP, Patel D, et al. A comprehensive review on floating oral drug delivery system. Drug Discov. Today. 2010;2(7):1-16p.
47) Rowe RC, Sheskey P, Quinn M. Handbook of pharmaceutical excipients. Libros Digitales-Pharmaceutical Press; 2009:23-29p.
48) HB N, Bakliwal S, Pawar S. In-situ gel: new trends in controlled and sustained drug delivery system. Int. J. Pharmtech Res. 2010;2(2):1398-1408p.
49) Rathod H, Patel V, Modasia M. In situ gel as a novel approach of gastroretentive drug delivery. IJPLS. 2010;1(8):440-447p.
50) Johnson FA, Craig DQ, Mercer AD, et al. The effects of alginate molecular structure and formulation variables on the physical characteristics of alginate raft systems. Int. J. Pharm. 1997;159(1):35-42p.
51) Suisha F, Kawasaki N, Miyazaki S, et al. Xyloglucan gels as sustained release vehicles for intraperitoneal administration of mitomycin. Int. J. Pharm. 1998; 1(72):27–32p.
52) Nagarwal RC, Srinatha A, Pandit JK. In situ forming formulation: development, evaluation, and optimization using 33 factorial design. AAPS Pharmscitech. 2009; 10:977-984p.
53) Barak S, Mudgil D. Locust bean gum: processing, properties and food applications-a review. Int. J. Biol. Macromol. 2014;66: 74-80p.
54) Kapadia CJ, Mane VB. Raft-forming agents: antireflux formulations. Drug Dev. Ind. Pharm. 2007;33(12):1350-1361p.
55) Aikawa K, Mitsutake N, Uda H,et al. Drug release from pH-response polyvinylacetal diethylaminoacetate hydrogel, and application to nasal delivery. Int. J. Pharm. 1998;168(2):181-188p.
56) Bagul US, Patil RV, Shirsath YA, et al. Stomach specific drug delivery systems: a review. IJPRD. 2011;4(4):147-150p.
57) Chandrashekar G, Udupa N. Biodegradable injectable implant systems for long term drug delivery using poly (lactic-co-glycolic) acid copolymers. JPP. 1996;48(7):669-674p.
58) Panwar P, Chourasiya D, Jain G, et al. Formulation and evaluation of oral floatable in-situ gel of diltiazem HCL. Int. J. Drug Deliv. Technol. 2012;2(1):264-270p.
59) Groning R, Berntgen M. Estimation of the gastric residence time of magnetic dosage forms using the Heidelberg capsule. Die Pharmaese. 1996;51(5):328-331p.
60) Nayak N.K, Das B, Gastroretentive drug delivery systems: a review. AJPCR. 2010;3(1):2–10p.
61) Shah S, Upadhyay P. In situ gel: a novel approach of gastro-retentive drug delivery. AJBPS. 2012;2 (8):1–8p.
62) Bechgaard H, Ladefoged K, Distribution of pellets in the gastrointestinal tract the influence on transit time exerted by density or diameter of pellets. J Pharm Pharmacol. 1978; 30:690–692p.
63) Krogel I, Bodmeier R. Floating or pulsatile drug delivery systems based on coated effervescent cores. Int. J. Pharm. 1999;2(18):175–184p.


Regular Issue Subscription Original Research
Volume 11
Issue 01
Received April 2, 2024
Accepted April 5, 2024
Published April 15, 2024