Integrated Optimization of Solar Photovoltaic Systems Using Taguchi Method and Computational Fluid Dynamics for Enhanced Efficiency

[{“box”:0,”content”:”n[if 992 equals=”Open Access”]n

n

n

n

Open Access

nn

n

n[/if 992]n[if 2704 equals=”Yes”]n

n

Notice

nThis is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.n

n[/if 2704]n

n

Year : 2025 [if 2224 equals=””]08/10/2025 at 12:12 PM[/if 2224] | [if 1553 equals=””] Volume : 12 [else] Volume : 12[/if 1553] | [if 424 equals=”Regular Issue”]Issue : [/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] 03 | Page :

n

n

nn

n

n

n

    By

    n

    [foreach 286]n

    n

    Shahina Momin, M.M. Mirza,

    n t

  • n

    n[/foreach]

    n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Student, Professor, Deparment of Mechanical Engineering, Rajarambapu Institute of Technology, Sangli, Deparment of Mechanical Engineering, Rajarambapu Institute of Technology, Sangli, Maharashtra, Maharashtra, India, India
  2. n[/if 1175][/foreach]

n[/if 2099][if 2099 equals=”Yes”][/if 2099]n

n

Abstract

n

n

nThe transition to renewable energy demands efficient and reliable photovoltaic (PV) systems to meet rising global energy needs. This study presents an integrated optimization framework combining the Taguchi method and Computational Fluid Dynamics (CFD) to improve the thermal and electrical performance of solar PV systems. A structured experimental design using an L9 orthogonal array evaluates the influence of three key parameters—material type, panel thickness, and cooling mechanism—on system efficiency. Analysis of variance (ANOVA) identifies the relative contribution of each factor, with material type contributing 40%, cooling 35%, and thickness 25%. The optimal configuration (monocrystalline, 2.0 mm thickness, and liquid cooling) achieved an actual efficiency of 19.7%, closely matching the predicted 19.9%. CFD simulations in ANSYS Fluent validated the thermal improvements by simulating heat dissipation under varying boundary conditions, highlighting liquid cooling as the most effective strategy. The hybrid approach demonstrates the value of integrating design of experiments with numerical modeling to produce scalable, high-performance PV solutions. This methodology not only enhances PV system design but also offers a replicable framework for multi-parameter optimization in other renewable energy technologies.nn

n

n

n

Keywords: Taguchi Method, Computational Fluid Dynamics (CFD), Thermal Management, PV Efficiency, ANOVA Analysis

n[if 424 equals=”Regular Issue”][This article belongs to Recent Trends in Fluid Mechanics ]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Recent Trends in Fluid Mechanics (rtfm)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article:
nShahina Momin, M.M. Mirza. [if 2584 equals=”][226 wpautop=0 striphtml=1][else]Integrated Optimization of Solar Photovoltaic Systems Using Taguchi Method and Computational Fluid Dynamics for Enhanced Efficiency[/if 2584]. Recent Trends in Fluid Mechanics. 08/10/2025; 12(03):-.

n

How to cite this URL:
nShahina Momin, M.M. Mirza. [if 2584 equals=”][226 striphtml=1][else]Integrated Optimization of Solar Photovoltaic Systems Using Taguchi Method and Computational Fluid Dynamics for Enhanced Efficiency[/if 2584]. Recent Trends in Fluid Mechanics. 08/10/2025; 12(03):-. Available from: https://journals.stmjournals.com/rtfm/article=08/10/2025/view=0

nn

n

n[if 992 equals=”Open Access”]Full Text PDF[/if 992]n

n

n[if 992 not_equal=”Open Access”]n

n

n[/if 992]n

nn

nnn

n[if 379 not_equal=””]nn

Browse Figures

n

n

n[foreach 379]

figures

[/foreach]n

n

n

n[/if 379]

n

n

n

n

n

References n

n[if 1104 equals=””]n

  1. Prabowo AD, Amrizal, Ibrahim GA. Geometry Optimization of PV/T-TEG Collector under Different Operating Conditions Using CFD Simulation and Taguchi Method. Eng J. 2022;26(8):1. doi:10.4186/ej.2022.26.8.1.
  2. Kuo CFJ, Liu JM, Umar ML, Lan WL, Huang CY, Syu SS. The photovoltaic-thermal system parameter optimization design and practical verification. Energy Convers Manag. 2019;180:358–71. doi:10.1016/j.enconman.2018.10.080.
  3. Pham BT, Duong CT, Nguyen MP. CFD Analysis and Taguchi-Based Optimization of the Thermohydraulic Performance of a Solar Air Heater Duct Baffled on a Back Plate. Appl Sci. 2021;11:4645. doi:10.3390/app11104645.
  4. Huang BJ, Lin TH, Hung WC, Sun FS. Performance Evaluation of Solar Photovoltaic/Thermal Systems. Sol Energy. 2001;70(5):443–8.
  5. Makki A, Omer S, Sabir H. Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew Sustain Energy Rev. 2015;41:658–84. doi:10.1016/j.rser.2014.08.069.
  6. Al-Damook M, Khatir Z, Al Qubeissi M, Dixon-Hardy D, Heggs PJ. Energy efficient double-pass photovoltaic/thermal air systems using a computational fluid dynamics multi-objective optimisation framework. Appl Therm Eng. 2021;194:117010. doi:10.1016/j.applthermaleng.2021.117010.
  7. Solanki SC, Dubey S, Tiwari A. Indoor simulation and testing of photovoltaic–thermal (PV–T) air collectors. Appl Energy. 2009;86:2421–8.
  8. Joshi SS, Dhoble AS. Photovoltaic–thermal systems (PVT): technology review and future trends. Renew Sustain Energy Rev. 2018;92:848–82.
  9. Hussain MT, Mahdi EJ. Assessment of Solar Photovoltaic Potential in Iraq. J Phys Conf Ser. 2018;1032(1):012007.
  10. Al-Kayiem HH, Mohammad ST. Potential of renewable energy resources with an emphasis on solar power in Iraq: An outlook. Resources. 2019;8(1):42.
  11. Khordehgah N, Żabnieńska-Góra A, Jouhara H. Energy performance analysis of a PV/T system coupled with domestic hot water system. ChemEngineering. 2020;4(2):22.
  12. Abdul-Ganiyu S, Quansah DA, Ramde EW, Seidu R, Adaramola MS. Investigation of solar  9 photovoltaic-thermal (PVT) and solar photovoltaic (PV) performance: A case study in Ghana. Energies. 2020;13(11):2701.
  13. Kulkarni RS, Talange DB, Dharme AA, Mate NV. Development and performance analysis of solar photovoltaic–thermal (PVT) systems. Sādhanā. 2020;45(1):1–5.
  14. Ramos A, Guarracino I, Mellor A, Alonso-Alvarez D, Childs P, Ekins-Daukes NJ, et al. Solar- thermal and hybrid photovoltaic-thermal systems for renewable heating. Grantham Inst Brief Pap. 2017;22.
  15. Herrando M, Markides CN, Hellgardt K. A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: system performance. Appl Energy. 2014;122:288–309. doi:10.1016/j.apenergy.2014.01.061.
  16. Michael JJ, Iniyan S, Goic R. Flat plate solar photovoltaic-thermal (PV/T) systems: a reference guide. Renew Sustain Energy Rev. 2015;51:62–88. doi:10.1016/j.rser.2015.06.022.
  17. Zondag HA. Flat-plate PV-Thermal collectors and systems: a review. Renew Sustain Energy Rev. 2008;12:891–959. doi:10.1016/j.rser.2005.12.012.
  18. Chow TT. A review on photovoltaic/thermal hybrid solar technology. Appl Energy. 2010;87:365–79. doi:10.1016/j.apenergy.2009.06.037.
  19. Aste N, del Pero C, Leonforte F. Water flat plate PV-thermal collectors: a review. Sol Energy. 2014;102:98–115. doi:10.1016/j.solener.2014.01.025.
  20. Jia Y, Alva G, Fang G. Development and applications of photovoltaic–thermal systems: a review. Renew Sustain Energy Rev. 2019;102:249–65. doi:10.1016/j.rser.2018.12.030.
  21. Sathe TM, Dhoble AS. A review on recent advancements in photovoltaic thermal techniques. Renew Sustain Energy Rev. 2017;76:645–72. doi:10.1016/j.rser.2017.03.075.
  22. Al-Waeli AHA, Sopian K, Kazem HA, Chaichan MT. Photovoltaic/Thermal (PV/T) systems: status and future prospects. Renew Sustain Energy Rev. 2017;77:109–30. doi:10.1016/j.rser.2017.03.126.
  23. Das D, Kalita P, Roy O. Flat plate hybrid photovoltaic-thermal (PV/T) system: a review on design and development. Renew Sustain Energy Rev. 2018;84:111–30. doi:10.1016/j.rser.2018.01.002.
  24. Zhang X, Zhao X, Smith S, Xu J, Yu X. Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renew Sustain Energy Rev. 2012;16:599–617. doi:10.1016/j.rser.2011.08.026.
  25. Pang W, Cui Y, Zhang Q, Wilson GJ, Yan H. A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions. Renew Sustain Energy Rev. 2020;119:109599. doi:10.1016/j.rser.2019.109599.
  26. Sultan SM, Efzan MNE. Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Sol Energy. 2018;173:939–54. doi:10.1016/j.solener.2018.08.032.
  27. Wu J, Zhang X, Shen J, Wu Y, Connelly K, Yang T, et al. A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules. Renew Sustain Energy Rev. 2017;75:839–54. doi:10.1016/j.rser.2016.11.063.
  28. Brahim T, Jemni A. Economical assessment and applications of photovoltaic/thermal hybrid solar technology: a review. Sol Energy. 2017;153:540–61. doi:10.1016/j.solener.2017.05.081.
  29. Abdelrazik AS, Al-Sulaiman FA, Saidur R, Ben-Mansour R. A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems. Renew Sustain Energy Rev. 2018;95:110–29. doi:10.1016/j.rser.2018.07.013.
  30. Lamnatou C, Chemisana D. Photovoltaic/thermal (PVT) systems: a review with emphasis on environmental issues. Renew Energy. 2017;105:270–87. doi:10.1016/j.renene.2016.12.009.
  31. Daghigh R, Ruslan MH, Sopian K. Advances in liquid based photovoltaic/thermal (PV/T) collectors. Renew Sustain Energy Rev. 2011;15:4156–70. doi:10.1016/j.rser.2011.07.028.
  32. Ullah KR, Saidur R, Ping HW, Akikur RK, Shuvo N. A review of solar thermal refrigeration and cooling methods. Renew Sustain Energy Rev. 2013;51:1428–45. doi:10.1016/j.rser.2015.07.011.
  33. Bataineh K, Taamneh Y. Review and recent improvements of solar sorption cooling systems. Energy Build. 2016;128:22–37. doi:10.1016/j.enbuild.2016.06.075.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

n


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””]Regular Issue[else]Published[/if 424] Subscription Original Research

n

n

n

n

n

Recent Trends in Fluid Mechanics

n

[if 344 not_equal=””]ISSN: 2455-1961[/if 344]

n

n

n

nn

n

[if 2146 equals=”Yes”][/if 2146][if 2146 not_equal=”Yes”][/if 2146]n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 1748 not_equal=””]

[else]

[/if 1748]n

n[if 1746 equals=”Retracted”]n

n

n

n

[/if 1746]n[if 4734 not_equal=””]

n

n

n

[/if 4734]n

n

Volume 12
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] 03
Received 01/08/2025
Accepted 13/08/2025
Published 08/10/2025
Retracted
Publication Time 68 Days

n

n

nn


n

Login

n
My IP
n

PlumX Metrics

nn

n

n

n[if 1746 equals=”Retracted”]n

[/if 1746]nnn

nnn”}]