Evaluating the therapeutic effects of Asystasia gangetica (Chinese violet) on the chronic respiratory condition- Asthma

Year : 2025 | Volume : 15 | Issue : 01 | Page : 15-21
    By

    Megha Majoe,

  1. Research Scholar, Department of Bioinformatics, BioNome | For Genomics and Bioinformatics Solution, Bengaluru, Karnataka, India

Abstract

Asthma is a chronic condition affecting the respiratory system. Its symptoms affect the immune pathways via helper T-cells. The plant Asystasia gangetica is prevalent throughout tropical regions around the world. It has been used in some herbal remedies to relieve symptoms of asthma. This study used computational techniques to assess the effectiveness of several phytocompounds present in A. gangetica in relieving symptoms of Asthma. Three proteins associated with asthma, namely IL-5, TRPA1 and IL1RL1, were selected. The phytocompound (1aR,4S,4aS,7R,7aS,7bR)-1,1,4,7-tetramethyl-2,3,4,5,6,7,7a,7b-octahydro-1aH-cyclopropa[h]azulen-4a-ol [Palustrol], was discovered to dock with the best binding affinity to all three proteins. In-silico pharmacological studies also confirmed its drug-likeness. This ligand should be further tested to understand its mode of action, ease of use and effectiveness against asthma symptoms.

Keywords: Asthma, Asystasia gangetica, IL-5, TRPA1, IL1RL1, Palustrol

[This article belongs to Research and Reviews: A Journal of Toxicology ]

How to cite this article:
Megha Majoe. Evaluating the therapeutic effects of Asystasia gangetica (Chinese violet) on the chronic respiratory condition- Asthma. Research and Reviews: A Journal of Toxicology. 2025; 15(01):15-21.
How to cite this URL:
Megha Majoe. Evaluating the therapeutic effects of Asystasia gangetica (Chinese violet) on the chronic respiratory condition- Asthma. Research and Reviews: A Journal of Toxicology. 2025; 15(01):15-21. Available from: https://journals.stmjournals.com/rrjot/article=2025/view=197597



References

  1. Hammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021 Mar;184(6):1469–85. doi: 10.1016/j.cell.2021.02.016.
  2. Akhabir L, Sandford AJ. Genome-wide association studies for discovery of genes involved in asthma. Respirology. 2011;16(3):396—06. doi: 10.1111/j.1440-1843.2011.01939.x.
  3. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet. 2024. Available from: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30925-9/fulltext.
  4. Balestrini A, Malcomber S, de Ceglia R, et al. A TRPA1 inhibitor suppresses neurogenic inflammation and airway contraction for asthma treatment. J Exp Med. 2021 Feb;218(4):e20201637. doi: 10.1084/jem.20201637.
  5. Bautista DM, Pellegrino M, Tsunozaki M. TRPA1: A Gatekeeper for Inflammation. Annu Rev Physiol. 2012 Sep;75:181–200. doi: 10.1146/annurev-physiol-030212-183811.
  6. Park H-W, Weiss ST. Understanding the Molecular Mechanisms of Asthma through Transcriptomics. Allergy Asthma Immunol Res. 2020 Feb;12(3):399–405. doi: 10.4168/aair.2020.12.3.399.
  7. Jordt S-E. TRPA1: An asthma target with a zing. J Exp Med. 2021 Feb;218(4):e20202507. doi: 10.1084/jem.20202507.
  8. Menzies-Gow A, Corren J, Bel EH, et al. Tezepelumab compared with other biologics for the treatment of severe asthma: a systematic review and indirect treatment comparison. J Med Econ. 2022 Dec;25(1):679–90. doi: 10.1080/13696998.2022.2074195.
  9. Akah PA, Ezike AC, Nwafor SV, Okoli CO, Enwerem NM. Evaluation of the anti-asthmatic property of Asystasia gangetica leaf extracts. J Ethnopharmacol. 2003 Nov;89(1):25–36. doi: 10.1016/S0378-8741(03)00227-7.
  10. Moe MM, Lwin MKT. Study on some chemical tests and antimicrobial activities tests from leaves of Asystasia gangetica (L.) T. Anderson. J Ethnopharmacol. 2024;3(2).
  11. Negeri D, Eggert H, Gienapp R, Saumweber H. Inducible RNA interference uncovers the Drosophila protein Bx42 as an essential nuclear cofactor involved in Notch signal transduction. Mech Dev. 2002 Sep;117(1–2):151–62. doi: 10.1016/S0925-4773(02)00193-4.
  12. Dilkalal A, S AA, G UT. Polyphenolic Profile, Antioxidant, Anti-Inflammatory, and Antimitotic Effects of Leaf Extracts of Asystasia gangetica. J Herbs Spices Med Plants. 2024 Jul;30(3):243–63. doi: 10.1080/10496475.2024.2340962.
  13. Kumalasari NR, Kustiyah E, et al. Evaluation of Asystasia gangetica as a potential forage in terms of growth, yield and nutrient concentration at different harvest ages. Trop Grassl. 2020 May;8(2):153–7. doi: 10.17138/tgft(8)153-157.
  14. Muhammed MT, Aki-Yalcin E. Molecular Docking: Principles, Advances, and Its Applications in Drug Discovery. LDDD. 2024 Mar;21(3):480–95. doi: 10.2174/1570180819666220922103109.
  15. Paggi JM, Pandit A, Dror RO. The Art and Science of Molecular Docking. Annu Rev Biochem. 2024 Aug;93(1):389–400. doi: 10.1146/annurev-biochem-030222-120000.
  16. Raval K, Ganatra T. Basics, types and applications of molecular docking: A review. IJCAAP. 2022 Mar;7(1):12–6. doi: 10.18231/j.ijcaap.2022.003.
  17. Kotsimbos AT, Hamid Q. IL-5 and IL-5 receptor in asthma. Mem Inst Oswaldo Cruz. 1997;92 Suppl 2:75–91. doi: 10.1590/s0074-02761997000800012.
  18. Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(11):235–42.
  19. Dassault Systèmes BIOVIA. Dassault Systèmes, San Diego. 2023.
  20. Laskowski RA, Jabłońska J, Pravda L, et al. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018;27(1):129–34. doi: 10.1002/pro.3289.
  21. Mohanraj K, Karthik L, et al. IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry And Therapeutics. Sci Rep. 2018 Mar;8(1):4329. doi: 10.1038/s41598-018-22631-z.
  22. PubChem 2023 update. Nucleic Acids Res. 2024. Available from: https://academic.oup.com/nar/article/51/D1/D1373/6777787?login=false.
  23. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 Mar;7(1):42717. doi: 10.1038/srep42717.
  24. Banerjee P, Kemmler E, Dunkel M, Preissner R. ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024 Jul;52(W1):W513–20. doi: 10.1093/nar/gkae303.
  25. Tangyuenyongwatana P. Cross-docking study of flavonoids against tyrosinase enzymes using PyRx 0.8 virtual screening tool. 2017.
  26. Klokova MV, Khan VA, Dubovenko ZV, et al. Terpenoids of the essential oil of Ledum palustre. Chem Nat Compd. 1983 May;19(3):278–81. doi: 10.1007/BF00579758.
  27. Raldugin VA, Demenkova LI, Pentegova VA. Acid succinates of diterpene alcohols — A new type of components of conifer oleoresins. Chem Nat Compd. 1990 Sep;26(5):594–5. doi: 10.1007/BF00601304.
  28. Muchalal M, Crouzet J. Volatile Components of Clove Essential Oil (Eugenia caryophyllus SPRENG): Neutral Fraction. Agric Biol Chem. 1985;49(6):1583–9. doi: 10.1271/bbb1961.49.1583.
  29. Dampc A, Luczkiewicz M. Rhododendron tomentosum (Ledum palustre). A review of traditional use based on current research. Fitoterapia. 2013 Mar;85:130–43. doi: 10.1016/j.fitote.2013.01.013.
  30. Baananou S, Suyitman S, Montesqrit M. Crude Nutrient and Mineral Composition of Asystasia Gangetica (L) Derived from Different Growing Areas. IPB University; 2018.
  31. Patel S, Ahmed S, Ahmed A. Phytochemistry and pharmacological activity of Asystasia gangetica. Int J Pharm Sci Res. 2019;10(2):435-45.
  32. Zhang T, He Y, Deng H, et al. Molecular mechanisms of anti-inflammatory effects of flavonoids in asthma: A review. Biomed Pharmacother. 2022;156:113921. doi: 10.1016/j.biopha.2022.113921.

Regular Issue Subscription Original Research
Volume 15
Issue 01
Received 04/01/2025
Accepted 13/01/2025
Published 10/02/2025
Publication Time 37 Days


My IP

PlumX Metrics