Targeting Dystrophin Restoration and Neuroprotection in Duchenne Muscular Dystrophy: Insights from Withania somnifera

Year : 2024 | Volume :15 | Issue : 02 | Page : 64-84
By

Siddhartha Pandurangi,

  1. Student Department of Biotechnology, M.S. Ramaiah University of Applied Sciences, Bengaluru Karnataka India

Abstract

Objectives: Duchenne muscular dystrophy is a genetic disorder. This disease affects men more common than it does women. Main objective is to identify the naturally active phytocompounds from Withania somnifera (Ashwagandha). Ashwagandha has a great value in the field of Ayurveda and Indian medicine and is used for treating muscular and neurological disorders. Toxicity prediction, molecular docking, statistical information, drug illness prediction, and Absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis are used to predict the phytocompounds as a drug. Methods: Protein Data bank (PDB) database was used to retrieve the Dystrophin protein and its chains. The poor binding affinity of the ligands with the targeted protein was removed. Toxicity and ADME analysis were done using ADMET lab 2.0 and Swiss ADME tools respectively and molecular docking was done using PyRx. Results: The Ramachandran plot displays the protein’s dihedral angles ψ against φ. ADMET analysis and molecular docking results showed Withaferine A, Somniferine, Coagulin Q, Physagulin D, Viscosalactone B have effective binding affinity towards Dystrophin protein and possess the properties of a drug which is safe to consume. Conclusion: Previous and present studies suggest that Withaferine A, Somniferine, Coagulin Q, Physagulin D, and Viscosalactone B could inhibit the A, B, C, and D chains of the Human Dystrophin protein and have effective binding affinity. The therapeutic strategies against Duchenne Muscular Dystrophy are based on molecular docking and ADMET analysis. Thus, the phytocompounds of Ashwagandha can be potential drug candidates.

Keywords: Duchenne muscular dystrophy, withania somnifera, ADMET analysis, molecular docking, ramachandran plot.

[This article belongs to Research & Reviews: A Journal of Pharmaceutical Science(rrjops)]

How to cite this article: Siddhartha Pandurangi. Targeting Dystrophin Restoration and Neuroprotection in Duchenne Muscular Dystrophy: Insights from Withania somnifera. Research & Reviews: A Journal of Pharmaceutical Science. 2024; 15(02):64-84.
How to cite this URL: Siddhartha Pandurangi. Targeting Dystrophin Restoration and Neuroprotection in Duchenne Muscular Dystrophy: Insights from Withania somnifera. Research & Reviews: A Journal of Pharmaceutical Science. 2024; 15(02):64-84. Available from: https://journals.stmjournals.com/rrjops/article=2024/view=156801



Browse Figures

References

1. Falzarano M, Scotton C, Passarelli C, Ferlini A. Duchenne muscular dystrophy: From diagnosis to therapy. Molecules [Internet]. 2015;20(10):18168–84. Available from: http://dx.doi.org/10.3390/molecules201018168
2. Banik DS. A critical review on duchenne muscular dystrophy through Ayurveda–a practical approach. World J Pharm Res [Internet]. 2017;864–72. Available from: http://dx.doi.org/10.20959/wjpr20178-9205
3. Elangkovan N, Dickson G. Gene therapy for duchenne muscular dystrophy. J Neuromuscul Dis [Internet]. 2021;8(s2): S303–16. Available from: http://dx.doi.org/10.3233/jnd-210678
4. Fortunato F, Farnè M, Ferlini A. The DMD gene and therapeutic approaches to restore dystrophin. Neuromuscul Disord [Internet]. 2021;31(10):1013–20. Available from: http://dx.doi.org/10.1016/j.nmd.2021.08.004
5. Jain M. Neuro-muscular diseases, Muscular dystrophies, Parkinson’s disease, Autism, Cerebral Palsy and mentally challenged children.
6. Davies KE, Nowak KJ. Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol [Internet]. 2006;7(10):762–73. Available from: http://dx.doi.org/10.1038/nrm2024
7. Fairclough RJ, Wood MJ, Davies KE. Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet [Internet]. 2013;14(6):373–8. Available from: http://dx.doi.org/10.1038/nrg3460
8. Duan D. Micro-dystrophin gene therapy goes systemic in duchenne muscular dystrophy patients. Hum Gene Ther [Internet]. 2018;29(7):733–6. Available from: http://dx.doi.org/10.1089/hum.2018.012
9. Chaturvedi A, Rao PN, U S, Kumar MA. Role Of Panchakarma In Duchenne Muscular Dystrophy. Int J Res Ayurveda Pharm [Internet]. 2013;4(2):272–5. Available from: http://dx.doi.org/10.7897/2277-4343.04238
10. By Akhoury Gourang Sinha, Principles and Practice of Therapeutic massage Jaypeebrothers medical publishers. Edition. 243.
11. Mukesh J. Yoga Annapurna & pandey MP preliminary study of integrated approach of panchakarma, yoga & Ayurvedic medicine in the management of muscular dystrophy. world health review. 2002; 1:1–33.
12. Agnivesa C, Chakrapannidatta A. Charaka Samhita With Chakrapannidatta, Ayurveda Dipika. Commentary. 2008;731–2.
13. Shailaja U, Prasanna N Rao KJ. Clinical study on efficacy of rajayapana basti & Baladi yoga in motor disabilities of CP in children. 2014;35.
14. Bitencourt-Ferreira G, Pintro VO, de Azevedo WF Jr. Docking with AutoDock4. In: Methods in Molecular Biology. New York, NY: Springer New York; 2019. p. 125–48.
15. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep [Internet]. 2017;7(1). Available from: http://dx.doi.org/10.1038/srep42717
16. Pollastri MP. Overview on the Rule of Five. Curr Protoc Pharmacol [Internet]. 2010;49(1). Available from: http://dx.doi.org/10.1002/0471141755.ph0912s49
17. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X (96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv Drug Deliv Rev [Internet]. 2001;46(1–3):3–26. Available from: http://dx.doi.org/10.1016/s0169-409x(00)00129-0
18. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem [Internet]. 1999;1(1):55–68. Available from: http://dx.doi.org/10.1021/cc9800071
19. Dong J, Wang N-N, Yao Z-J, Zhang L, Cheng Y, Ouyang D, et al. ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform [Internet]. 2018;10(1). Available from: http://dx.doi.org/10.1186/s13321-018-0283-x
20. Schlede E, Genschow E, Spielmann H, Stropp G, Kayser D. Oral acute toxic class method: a successful alternative to the oral LD50 test. Regul Toxicol Pharmacol [Internet]. 2005;42(1):15–23. Available from: http://dx.doi.org/10.1016/j.yrtph.2004.12.006
21. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature [Internet]. 1992;355(6362):696–702. Available from: http://dx.doi.org/10.1038/355696a0
22. Nigro V, Savarese M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol. 2014;33(1):1–12.
23. Buysse K, Riemersma M, Powell G, Van Reeuwijk J, Chitayat D, Roscioli T, et al. Missense mutations in beta-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet. 2013; 22:1746–54.
24. Carss KJ, Stevens E, Foley AR, Cirak S, Riemersma M, Torelli S, et al. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of alpha-dystroglycan. Am J Hum Genet. 2013; 93:29–41.
25. Di Costanzo S, Balasubramanian A, Pond HL, Rozkalne A, Pantaleoni C, Saredi S, et al. POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet [Internet]. 2014;23(21):5781–92. Available from: http://dx.doi.org/10.1093/hmg/ddu296
26. Longman C, Brockington M, Torelli S, Jimenez-Mallebrera C, Kennedy C, Khalil N, et al. Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet [Internet]. 2003;12(21):2853–61. Available from: http://dx.doi.org/10.1093/hmg/ddg307
27. Ogawa M, Nakamura N, Nakayama Y, Kurosaka A, Manya H, Kanagawa M, et al. GTDC2 modifies O-mannosylated alpha-dystroglycan in the endoplasmic reticulum to generate N-acetyl glucosamine epitopes reactive with CTD110.6 antibody. Biochem Biophys Res Commun. 2013; 440:88–93.
28. Willer T, Lee H, Lommel M, Yoshida-Moriguchi T, de Bernabe DBV, Venzke D, et al. ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat Genet [Internet]. 2012;44(5):575–80. Available from: http://dx.doi.org/10.1038/ng.2252
29. Gomaa MS, Ali IAI, El Enany G, El Ashry ESH, El Rayes SM, Fathalla W, et al. Facile synthesis of some coumarin derivatives and their cytotoxicity through VEGFR2 and topoisomerase II inhibition. Molecules [Internet]. 2022;27(23):8279. Available from: http://dx.doi.org/10.3390/molecules27238279
30. Korenbaum E, Rivero F. Calponin homology domains at a glance. J Cell Sci [Internet]. 2002;115(18):3543–5. Available from: http://dx.doi.org/10.1242/jcs.00003
31. Broderick MJF, Winder SJ. Spectrin, alpha-actinin, and dystrophin. Adv Protein Chem [Internet]. 2005; 70:203–46. Available from: http://dx.doi.org/10.1016/S0065-3233(05)70007-3
32. Koenig M, Monaco AP, Kunkel LM. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell [Internet]. 1988;53(2):219–28. Available from: http://dx.doi.org/10.1016/0092-8674(88)90383-2
33. Amann KJ, Renley BA, Ervasti JM. A cluster of basic repeats in the dystrophin rod domain binds F-actin through an electrostatic interaction. J Biol Chem [Internet]. 1998;273(43):28419–23. Available from: http://dx.doi.org/10.1074/jbc.273.43.28419
34. Rumeur L, Fichou E, Pottier Y, Gaboriau S, Rondeau-Mouro F, Vincent C, et al. Interaction of dystrophin rod domain with membrane phospholipids. Evidence of a close proximity between tryptophan residues and lipids. J Biol Chem. 2003; 278:5993–6001.
35. Koenig M, Kunkel LM. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J Biol Chem [Internet]. 1990;265(8):4560–6. Available from: http://dx.doi.org/10.1016/s0021-9258(19)39599-7
36. Ilsley JL, Sudol M, Winder SJ. The WW domain: linking cell signalling to the membrane cytoskeleton. Cell Signal [Internet]. 2002;14(3):183–9. Available from: http://dx.doi.org/10.1016/s0898-6568(01)00236-4
37. Rentschler S, Linn H, Deininger K, Bedford MT, Espanel X, Sudol M. The WW domain of dystrophin requires EF-hands region to interact with beta-dystroglycan. Biol Chem [Internet]. 1999;380(4):431–42. Available from: http://dx.doi.org/10.1515/BC.1999.057
38. Ponting CP, Blake DJ, Davies KE, Kendrick-Jones J, Winder SJ. ZZ and TAZ: new putative zinc fingers in dystrophin and other proteins. Trends Biochem Sci [Internet]. 1996;21(1):11–3. Available from: http://dx.doi.org/10.1016/s0968-0004(06)80020-4
39. Anderson JT, Rogers RP, Jarrett HW. Ca2+-calmodulin binds to the carboxyl-terminal domain of dystrophin. J Biol Chem [Internet]. 1996;271(12):6605–10. Available from: http://dx.doi.org/10.1074/jbc.271.12.6605
40. Ayalon G, Davis JQ, Scotland PB, Bennett V. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell [Internet]. 2008;135(7):1189–200. Available from: http://dx.doi.org/10.1016/j.cell.2008.10.018
41. Bhosle RC, Michele DE, Campbell KP, Li Z, Robson RM. Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochem Biophys Res Commun [Internet]. 2006;346(3):768–77. Available from: http://dx.doi.org/10.1016/j.bbrc.2006.05.192
42. Blake DJ, Tinsley JM, Davies KE, Knight AE, Winder SJ, Kendrick-Jones J. Coiled-coil regions in the carboxy-terminal domains of dystrophin and related proteins: potentials for protein-protein interactions. Trends Biochem Sci [Internet]. 1995;20(4):133–5. Available from: http://dx.doi.org/10.1016/s0968-0004(00)88986-0
43. Sadoulet-Puccio HM, Rajala M, Kunkel LM. Dystrobrevin and dystrophin: an interaction through coiled-coil motifs. Proc Natl Acad Sci U S A [Internet]. 1997;94(23):12413–8. Available from: http://dx.doi.org/10.1073/pnas.94.23.12413
44. Dar NJ, MuzamilAhmad. Neurodegenerative diseases and Withania somnifera (L.): An update. J Ethnopharmacol [Internet]. 2020;256(112769):112769. Available from: http://dx.doi.org/10.1016/j.jep.2020.112769
45. Rastogi RP, Mehrotra BN. Compendium of Indian medicinal plants, 2nd Reprint, Central Drug Research Institute, Lucknow and National Institute of Science Communication, Council of Scientific and Industrial Research. New Delhi; 1998.
46. Bhattacharya A, Ghosal S, Bhattacharya SK. Antioxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J Ethnopharmacol. 2001; 74:1–6.
47. Nadkarni KM. Indian materia medica, (Popular Prakshan Limited: Bombay). 1291.
48. Lohar DR, Chaturvedi D, Varma PN. Mineral elements of a few medicinally important plants, Ind. Ind Drugs. 1992;29:271–3.
49. Mohanty I, Arya DS, Dinda A, Talwar KK, Joshi S, Gupta SK. Mechanisms of Cardioprotective effect of Withania somnifera in experimentally induced myocardial infarction, Basic clin. Basic clin Pharmacol Toxicol. 2004;94(4):184–90.
50. Bilal Ahmad Mi J, Nisar A. Tanvir-ul Hasan, Sushma Koul, Botanical, chemical and pharmacological review of Withania somnifera (Indian ginseng): an ayurvedic medicinal plant. Indian Journal of Drugs and Diseases. 2012;1(6):147–60.
51. Andulla B, Radhika B. Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera) root. Indian J Exp Biol. 2000; 38:607–9.
52. Battacharya SK. Adaptogenic activity of Withania somnifera an experimental study using a rat model of chronic stress. Journal of Pharmacological. 2003;75(3):547–55575.
53. Rani A, Baranwal NR, Nema RK. Pharmacognostical & Phytochemical studies of Withania somnifera. Asian Journal of Biochemical and Pharmaceutical Research. 2012;2(4):195–8.
54. Qamar U, Samiulla L, Singh VK, Jamil S. Phytochemical and Pharmacological Profile of Withania somnifera Dunal: A Review. Journal of Applied Pharmaceutical Science. 2012;2(1):170–5.
55. Devi PU, Sharada AC, Solomon FE. Antitumor and radiosensitizing effects of Withania somnifera (ashwagandha) on a transplantable mouse tumor, Sarcoma-180, Ind. J Exp Biol. 1993;31:607–11.
56. Davis L, Kuttan G. Suppressive effect of cyclophosphamide-induced toxicity by Withania somnifera extract in mice. J Ethnopharmacol [Internet]. 1998;62(3):209–14. Available from: http://dx.doi.org/10.1016/s0378-8741(98)00039-7
57. Malhotra CL, Mehta VL, Das PK, Dhalla NS. Studies on Withania-ashwagandha, Kaul. V. The effect of total alkaloids (ashwagandholine) on the central nervous system, Ind. J Physiol Pharmacol. 1965; 9:127–36.
58. Sehgal N, Gupta A, Khader R, Shanker V, Joshi D, Mills JT, et al. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver, Proc. Proc Nat Acad Sci. 2012;109(9):3510–5.

 

 


Regular Issue Subscription Review Article
Volume 15
Issue 02
Received May 10, 2024
Accepted June 14, 2024
Published July 19, 2024