AQUASOMES: A Vesicular, Self-assembled Ceramic Nanoparticulate Drug Carrier

Year : 2023 | Volume :12 | Issue : 03 | Page : 1-14
By

K. Samson

M. Varalakshmi, K. Prathima

  1. Student (M.Pharm) Department of Pharmaceutics, School of Pharmaceutical Sciences and Technologies, Jawaharlal Nehru Technological University, Kakinada Andhra Pradesh India

Abstract

Nano-biopharmaceutics involves delivery of biopharmaceutical product through different biomaterials like multi-functional nanoparticles, quantum dots, aquasomes, super-paramagnetic iron oxide crystals, and liposomes dendrimers. Aquasomes are considered as one of the most recently developed delivery systems for bioactive molecules like peptides, proteins, hormones, antigens and genes to specific sites. Aquasomes have a spherical shape and a particle size of 60–300 nm. These are three layered self-assembled nano-particulate carrier system. This three-layered structure has a polyhydroxy oligomer coated centre into which biochemically active molecules are adsorbed. Three types of core material are used to produce aquasomes; Tin oxide, Nano-crystalline carbon ceramics (diamonds) and Brushite (calcium phosphate dihydrate). Because of their high degree of order and structural regularity, ceramics are commonly used as core materials. Carbohydrate coating have aqueous environment and this protects active drug molecule from dehydration. There by it improves stability of active drug molecule. The current review provides an overview of the aquasomes as a promising tool for drug delivery. It includes brief introduction of aquasomes, self-assembling principles, composition of aquasomes, objectives, properties, advantages, methods of preparation, characterization study and therapeutic applications as a drug delivery system.

Keywords: Aquasomes, ceramics, self-assembled molecules, polyhydroxy oligomer, drug carrier, characterization, applications.

[This article belongs to Research & Reviews: A Journal of Pharmaceutical Science(rrjops)]

How to cite this article: K. Samson, M. Varalakshmi, K. Prathima. AQUASOMES: A Vesicular, Self-assembled Ceramic Nanoparticulate Drug Carrier. Research & Reviews: A Journal of Pharmaceutical Science. 2023; 12(03):1-14.
How to cite this URL: K. Samson, M. Varalakshmi, K. Prathima. AQUASOMES: A Vesicular, Self-assembled Ceramic Nanoparticulate Drug Carrier. Research & Reviews: A Journal of Pharmaceutical Science. 2023; 12(03):1-14. Available from: https://journals.stmjournals.com/rrjops/article=2023/view=92215



Browse Figures

References

1. S. Banerjee, K.K. Sen, Aquasome: a novel nanoparticulate drug carrier, J. Drug Deliv. Sci. Technol. (2018): 43:446–652.
2. G. Gregoriadis, C.P. Swain, E.J. Wills, A.S. Tavill, Drug-carrier potential of liposomes in cancer chemotherapy, Lancet.1974:1(7870):1313-6.
3. T. Govender, S. Stolnik, M.C. Garnett, L. Illum, S.S. Davis, PLGA nanoparticles prepared by nano-precipitation: drug loading and release studies of a water-soluble drug, J. Contr. Release.1999 Feb 1;57(2):171-85.
4. B. Sarmento, S. Martins, D. Ferreira, E. Souto, Oral insulin delivery by means of solid lipid nanoparticles, Int. J. Nanomed. 2007 Dec; 2(4): 743–749.
5. V. Sanna, E. Gavini, M. Cossu, G. Rassu, P. Giunchedi, Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: in-vitro characterization, ex vivo and in vivo studies, J. Pharm. Pharmacol. 57 (2007) 1057–1064.
6. P. Jain, A. Mishra, S. Yadav, U.K. Patil, Formulation development and characterization of solid lipid nanoparticles containing nimesulide, Int. J. Drug Deliv. Technol. August 2009:1(1):24-27.
7. X. Pang, F. Cui, J. Tian, J. Chen, Preparation and characterization of magnetic solid lipid nanoparticles loaded with ibuprofen, Asian J. Pharm. Sci. (2009):4(2):132–137.
8. K. Ofokansi, G. Winter, G. Fricker, et al., Matrix-loaded biodegradable gelatine nanoparticles as new approach to improve drug loading and delivery, Eur. J. Pharm. BioPharma. 2010 Sep; 76(1):1-9.
9. C. Choi, S.Y. Chae, J.W. Nah, Thermosensitive poly(N-isopropylacrylamide)-b poly (ɛ- caprolactone) nanoparticles for efficient drug delivery system, Polymer.2006:47(13):4571–4580.
10. M. Yoshioka, M. Hashida, S. Muranihsi, et al., Specific delivery of mitomycin c to the liver, spleen and lung: nano- and micro spherical carriers of gelatine, Int. J. Pharm. 1981:81:131–141.
11. P.D. Scholes, A.G.A. Coombes, L. Illum, et al., The preparation of sub-200 nm poly (lactide-co- glycoside) microspheres for site-specific drug delivery, J. Control Release. 1993:25(1-2):145– 153.
12. A.K. Patri, J.F. Kukowska-Latallo, J.R. Baker Jr., Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex, Adv Drug Deliv Rev. 2005 Dec 14;57(15):2203-14.
13. D.A. Rothenfluh, H. Bermudez, C.P. O’Neil, et al., Bio functional polymer nanoparticles for intra- articular targeting and retention in cartilage, Nat Mater. 2008 Mar;7(3):248-54.
14. S. Dhar, N. Kolishetti, S.J. Lippard, et al., Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo, Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1850-5.
15. B. Irving, Nanoparticle drug delivery systems, Inno Pharm. Biotechnol.2007:24:58–62.
16. L.H. Reddy, R.S.R. Murthy, Pharmacokinetics and biodistribution studies of doxorubicin loaded poly (butyl cyanoacrylate) nanoparticles synthesized by two different techniques, Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub . 2004 Dec;148(2):161-6.
17. B. Devarakonda, R.A. Hill, W. Liebenberg, et al., Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins, Int J Pharm. 2005 Nov 4;304(1-2):193-209.
18. E. Merisko-Liversidge, G.G. Liversidge, E.R. Cooper, Nanosizing: a formulation approach for poorly-water-soluble compounds, Eur J Pharm Sci. 2003 Feb;18(2):113-20.
19. Z. Luo, J. Jiang, pH-sensitive drug loading/releasing in amphiphilic copolymer PAE–PEG: integrating molecular dynamics and dissipative particle dynamics simulations, J. Control Release.2012 Aug 20;162(1):185-93.
20. K. Kossovsky, A. Gelman, E.E. Sponsler, H.J. Hnatyszyn, S. Rajguru, M. Torres, et al., Surface- modified nanocrystalline ceramics for drug delivery applications, Biomaterials 1994 Dec;15(15):1201-7.
21. M. Gulati, S.K. Singh, U. Kishore, R. Kumar, M.S. Umashankar, Potential applications of aquasomes for therapeutic delivery of proteins and peptides, Nanostructured Drug Deliv 4 (2015) Nanostructured Drug Delivery, Chapter: 6Publisher: McGraw HillEditors: Bhoop BS, (pp.439- 453).
22. V. Sutariya, P. Patel, Aquasomes: a novel carrier for drug delivery, Int. J. Pharmaceut. Sci. Res. 2012:3:688–694.
23. R.S. Pandey, S. Sahu, M.S. Sudheesh, J. Madan, M. Kumar, V.K. Dixit, Carbohydrate modified ultrafine ceramic nanoparticles for allergen immune therapy, Int Immunopharmacol. 2011 Aug;11(8):925-31.
24. J.R. Kanwar, G. Mahidhara, R.K. Kanwar, Novel alginate-enclosed chitosan- calcium phosphate- loaded iron-saturated bovine lactoferrin nano- carriers for oral delivery in colon cancer therapy, Nanomedicine (Lond). 2012 Oct;7(10):1521-50.
25. D. Singh, S. Singh, J. Sahu, S. Srivastava, M.R. Singh, Ceramic nanoparticles: recompense, cellular uptake and toxicity concerns, Artif Cells Nanomed Biotechnol. 2016;44(1):401-9.
26. A.K. Goyal, A. Rawat, S. Mahor, et al., Nano decoy system: a novel approach to design hepatitis B vaccine for immunopotentiation, Int J Pharm. 2006 Feb 17;309(1-2):227-33.
27. I. Rojas-Oviedo, R.A. Salazar-Lopez, J. Reyes-Gasga, C.T. Quirino-Barreda, Elaboration and structural analysis of aquasomes loaded with indomethacin, Eur J Pharm Sci. 2007 Nov;32(3):223-30.
28. Kossovsky, Gelman. A and Sponsler, E.E. Cross linking encapsulated haemoglobin solid phase supports: lipid enveloped haemoglobin adsorbed to surface modified ceramic particles exhibit physiological oxygen lability. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(3):479-85.
29. Jain. N. K. “Advances in controlled drug delivery system”; CBS HB (1 January 2017):317-32.
30. P. Vengala, S. Aslam, C.V.S. Subrahmanyam, Development and in-vitro evaluation of ceramic nanoparticles of piroxicam, Lat. Am. J. Pharm.2013: 32(8):1124-1130.
31. A.K. Cherian, A.C. Rana, S.K. Jain, Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parentral delivery of insulin, Drug Dev Ind Pharm. 2000 Apr;26(4):459-63.
32. N. Kossovsky, Artificial Self-assembling Systems for Gene Delivery, chap. 15. American Chemical Society; 1st edition (May 5, 1996).
33. P. Vengala, S. Dintakurthi, C.V.S. Subrahmanyam, Lactose coated ceramic nanoparticles for oral drug delivery, J. Pharm. Res. 2013:7(6):540–545.
34. S. Patel, C. Aundhia, A. Seth, N. Shah, K. Pandey, D. Patel, Aquasomes: a novel approach in drug carrier system, Eur. J. pharm. Med. Res.2016:3:198–201.
35. M. Cagdas, A.D. Sezer, S. Bucak, Liposomes as potential drug carrier systems for drug delivery, Application of Nanotech in Drug deliv (2014) 1–50.
36. M.E. Haberland, G.M. Fless, A.M. Scannu, A.M. Fogelman, Malondiaaldehyde demodification of lipoprotein produces avid uptake by human monocytes macrophages, J Biol Chem. 1992 Feb 25;267(6):4143-4159.
37. A. Kajbafvala, H. Bahmanpour, M.H. Maneshian, M. Li, Self-assembly techniques for nanofabrication, J. Nanometre. (2013) 1–3.
38. S. Pandey, A. Badola, G.K. Bhatt, P. Kothiyal, An Overview on aquasomes, Int. J. Pharm. Chem. Sci. 2013:2(3):1282–1287.
39. V.V. Inde, C.M. Jangme, S.S. Patil, G.S. Inde, D.V. Chavan, A.D. Yedale, P.D. Makne, A review on aquasomes: a potential drug delivery carrier, Int. Res. J. Pharmaceut. Appl. Sci. 2013:3:124– 129.
40. W. P. Bryan, Biopolymers 25, 1967 (1986).
41. J.D. Dunitz, The entropic cost of bound water in crystals and biomolecules, Science. 1994 Apr 29;264(5159):670.
42. J.H. Crowe, L.M. Crowe, D. Chapman, Infrared spectroscopic studies on interactions of water and carbohydrate with a biological membrane, Arch Biochem Biophys. 1984 Jul;232(1):400-7.
43. H.H. Beherei, G.T. El-Bassyouni, K.R. Mohamed, Modulation, characterization and bioactivity of new bio composites based on apatite, Ceram. Int.2008:34(8):2091–2097.
44. K.R. Mohamed, A.A. Mostafa, Preparation and bioactivity evaluation of hydroxyapatite- titania/chitosan-gelatine polymeric bio composites, Mater. Sci. Eng. C2008:28(7):1087–1099.
45. A.M. El Kady, K.R. Mohamed, G.T. El- Bassyouni, Fabrication characterization and bioactivity evaluation of calcium pyrophosphate/polymeric bio composites, Ceram. Int. 2009:35(7):2933– 2942.
46. M. Chen, J. Tan, Y. Lian, Debao Liu, Preparation of gelatine coated hydroxyapatite nanorods and the stability of its aqueous colloidal, Appl. Surf. Sci. 2008:254(9):2730–2735.
47. J. Zhan, Y.H. Tsen, J.C.C. Chan, C.Y. Mou, Biomimetic formation of hydroxyapatite nanorods by a single-crystal-to-single-crystal transformation, Adv. Funct. Mater. 2005:15(12):2005–2010.
48. H.N. Lim, A. Kassim, N.M. Huang, Preparation and characterization of calcium phosphate nanorods using reverse microemulsion and hydrothermal processing routes, Sains Malays. 2010:39(2):267–273.
49. W. Paul, C.P. Sharma, Porous hydroxyapatite nanoparticles for intestinal delivery of insulin, Trends Biomater. Artif. Organs.2001:14:37–38.
50. I. Roy, S. Mitra, S. Maitra, S. Mujumdar, Calcium phosphate nanoparticles as novel nonviral vectors for targeted gene delivery, Int J Pharm. 2003 Jan 2;250(1):25-33.
51. C. Lai, S.Q. Tang, Y.J. Wang, K. Wei, Formation of calcium phosphate nanoparticles in reverse microemulsions, Mater. Lett. 2005:59(2):210–214.
52. A. Peetsch, C. Greulich, D. Braun, C. Stroetges, H. Rehage, B. Siebers, M. Koller, M. Epple, Silver-doped calcium phosphate nanoparticles: synthesis, characterization & toxic effects toward mammalian & prokaryotic cells, Colloids Surf B Biointerfaces. 2013 Feb 1;102:724-9.
53. H.R. Ramay, M. Zhang, Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods, Biomaterials. 2003 Aug;24(19):3293-302.
54. H.R. Ramay, M. Zhang, Biphasic calcium phosphate nanocomposite porous scaffolds for load- bearing bone tissue engineering, Biomaterials. 2004 Sep;25(21):5171-80.
55. K.K. Tan, G.H. Tan, B.S. Shamsul, K.H. Chua, M.H. Ng, B.H. Ruszymah, B.S. Amminuddin, M.Y. Loqman, Bone graft substitute using hydroxyapatite scaffold seeded with tissue engineered autologous osteoprogenitor cells in spinal fusion: early result in a sheep model, Med J Malaysia. 2005 Jul;60 Suppl C:53-58.
56. S.S. Kim, M.S. Park, O. Jeon, C.C. Yong, B.C. Kim, Poly (lactide-co glycolide)/ hydroxyapatite composite scaffolds for bone tissue engineering, Biomaterials. 2006 Mar;27(8):1399-409.
57. R.K. Roeder, M.M. Sproul, C.H. Turner, Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites, J Biomed Mater Res A. 2003 Dec 1;67(3):801-12.
58. H. Zhang, B.W. Darvell, Synthesis and characterization of hydroxyapatite whiskers by hydrothermal homogeneous precipitation using acetamide, Acta Biomater. 2010:6(8):3216 3222.
59. H. Ohgushi, A.I. Caplan, Stem cell technology and bioceramics: from cell to gene engineering, J Biomed Mater Res. 1999;48(6):913-27.
60. H. Yoshikawa, A. Myoui, Bone tissue engineering with porous hydroxyapatite ceramics, J Artif Organs. 2005;8(3):131-6.
61. H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater. 2011:7(7):2769–2781.
62. J.A. Clemens, C.P. Klein, R.C. Vriesde, P.M. Rozing, K. deGroot, Healing of large (2mm) gaps around calcium phosphate-coated bone implants: a study in goats with a follow up of 6 months, J Biomed Mater Res. 1997 Jul;36(1):55-64.
63. M.R. Ickovic, E.H. Relyveld, E. Hénocq, Calcium-phosphate-adjuvanted allergens: total and specific IgE levels before and after immunotherapy with house dust and dematophagoides pteronyssinus extracts, Ann Immunol (Paris). Nov-Dec 1983;134D(3):385-98.
64. E.H. Relyveld, M.R. Ickovic, E. Hénocq, M. Garcelon, Calcium phosphate adjuvanted allergens, Ann Allergy. 1985 Jun;54(6):521-9.
65. H. Kato, M. Shibano, Relationship between haemolytic activity and adsorption capacity of aluminium hydroxide and calcium phosphate as immunological adjuvants for biological, Microbiol Immunol. 1994;38(7):543-8.
66. N. Goto, H. Kato, J. Maeyama, M. Shibano, T. Saito, J. Yamaguchi, S. Yoshihara, Local tissue irritating effects and adjuvant activities of calcium phosphate and aluminium hydroxide with different physical properties, Vaccine. Aug-Sep 1997;15(12-13):1364-71.
67. Q. He, A.R. Mitchell, S.L. Johnson, C. Wagner- Bartak, T. Morcol, S.J. Bell, Calcium phosphate nanoparticle adjuvant, Clin Diagn Lab Immunol. 2000 Nov;7(6):899-903.
68. W. Paul, C.P. Sharma, Bioceramics towards nano-enabled drug delivery: a mini review, Trends Biomater. Artif. Organs. 2005:19(1):7–11.
69. H.J. Hnatyszyn, N. Kossovsky, A. Gelman, E. Sponsler, Drug delivery systems for the future, PDA J Pharm Sci Technol. Sep-Oct 1994;48(5):247-54.
70. N. Kossovsky, A. Gelman, S. Rajguru, et al., Control of molecular polymorphisms by a structured carbohydrate/ceramic delivery vehicle – aquasomes, J. Contr. Release 1996:39(2-3):383–388.
71. A.K. Goyal, K. Khatri, N. Mishra, A. Mehta, B. Vaidya, S. Tiwari, S.P. Vyas, Aquasomes- A nanoparticulate approach for the delivery of antigen, Drug Dev Ind Pharm. 2008 Dec;34(12):1297-305.
72. A. Chakraborty, S. Lahkar, B.K. Dey, F. Alam, Aquasomes- A brief overview, Int J Pharm Sci Res 2014;2(6):1222-1230.
73. N. Kossovsky, A. Gelman, E. Sponsler, D. Millett, Nanocrystalline Epstein-Barr virus decoys, J. Appl. Biomater. 1991:2:251–259.
74. S. Patil, S.S. Pancholi, S. Agrawal, G.P. Agarwal, Surface-modified meso-porous ceramics as delivery vehicle for haemoglobin, Drug Deliv. May-Jun 2004;11(3):193-9.
75. A.J. Khopade, S. Khopade, N.K. Jain, Development of haemoglobin aquasomes from spherical hydroxyapatite cores precipitated in the presence of half-generation poly (amidoamine) dendrimer, Int J Pharm. 2002 Jul 8;241(1):145-54.
76. C.K. Sahoo, D.V. Ramana, K. Satyanarayana, D. Mohanty, Drug delivery through aquasomes, J. Pharm. Adv. Res. 2018:1(3):156–162.
77. Jain NK, Umamaheshwari RB. Control and novel drug delivery systems. In: Jain NK, editor. Pharmaceutical product development. CBS Publishers & Distributors, New Delhi (2006) 419-455.
78. L.P. Nori, Aquasomes: role to deliver bioactive substances, Res. J Pharma Dosage Forms Tech 2010:2(6):356–360.
79. N. Narang, Aquasomes: self-assembled systems for the delivery of bioactive molecules, Asian J. Pharm. 2012:6(2):95–100.
80. P. Vengala, D. Shwetha, A. Sana, et al., Aquasomes: a novel drug carrier system, Int. Res. J. Pharm. 2012:3(4):123–127.
81. B.K. Nanjwade, G.M. Hiremath, F.V. Manvi, et al., Formulation and evaluation of etoposide loaded aquasomes, J. Nano pharm. Drug Deliv. 2013:1(1):92–101.
82. M. Rawat, D. Singh, S. Saraf, et al., Development and in vitro evaluation of alginate gel- encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme, Drug Dev Ind Pharm. 2008 Feb;34(2):181-8.
83. Vyas S.P., Goyal A.K., Khatri K., Mishra N., Mehta A., Vaidya, B., et al. Aquasomes—a nanoparticulate approach for the delivery of antigen. Drug Dev Ind Pharm. 2008 Dec;34(12):1297-1305.
84. S. Kommineni, S. Ahmad, P. Vengala, et al., Sugar coated ceramic nanocarriers for the oral delivery of hydrophobic drugs: formulation, optimization and evaluation, Drug Dev Ind Pharm. 2012 May;38(5):577-86.
85. Vyas S.P., Goyal A.K., Rawat A., Mahor S., Gupta P.N., Khatri K. Nano decoy system: a novel approach to design hepatitis B vaccine for immunopotentiation. Int J Pharm. 2006 Feb 17;309(1- 2):227-33.
86. S.J. Sanjay, S.J. Pramod, M.D. Neha, R.J. Kisan, J.K. Vilasrao, Aquasomes: a novel drug carrier, J. Appl. Pharmaceut. Sci. 2 (2012) 184–192.
87. S.D. Aher, P.N. Wavhal, M.V. Gadhave, S.K. Banergee, Aquasomes: a novel drug carrier, Int. J. Universal Pharm Life Sci. 2012:2(1):24–35.
88. P. Saurabh, B. Ashutosh, K.B. Ganesh, K. Preeti, An overview on aquasomes, Int. J. Pharm. Chem. Sci.2013:2(3):1282–1287.
89. K. Rege, H.C. Huang, S. Barua, G. Sharma, S.K. Dey, Inorganic nanoparticle for cancer imaging and therapy, J. Contr. Release. 2011:155(3):344–357.
90. D. Luo, E. Han, N. Belcheva, W.M. Saltzman, A Self assembled, modular delivery system mediated by silica nanoparticles, J Control Release. 2004 Mar 5;95(2):333-41.
91. N. Kossovsky, A. Gelman, H.J. Hnatyszyn, et al., Surface-modified diamond nanoparticles as antigen delivery vehicles, Bioconjug Chem. Sep-Oct 1995;6(5):507-11.


Regular Issue Subscription Article
Volume 12
Issue 03
Received August 17, 2021
Accepted October 21, 2021
Published January 21, 2023