AI Powered Invention in Pharmaceuticals Boosting Innovation

Year : 2024 | Volume : 15 | Issue : 02 | Page : 102 107
    By

    Bhagyashri Sandip Patil,

  • Patil Divyashree K,

  • Patil Hetakshi V,

  • Amruta N. Patil,

  • Sunila.A.Patil,

  1. Student M Pharm, Department of Pharmaceutical Quality Assurance, P.S.G.V.P. Mandal’sCollege of Pharmacy, Maharashtra, India
  2. Student M Pharm, Department of Pharmaceutical Quality Assurance, P.S.G.V.P. Mandal’sCollege of Pharmacy, Maharashtra, India
  3. Student M Pharm, Department of Pharmaceutical Quality Assurance, P.S.G.V.P. Mandal’sCollege of Pharmacy, Maharashtra, India
  4. Assistant Professor, Department of Pharmaceutical Quality Assurance, P.S.G.V.P. Mandal’sCollege of Pharmacy, Maharashtra, India
  5. Assistant Professor, Department of Pharmaceutical Quality Assurance, P.S.G.V.P. Mandal’sCollege of Pharmacy, Maharashtra, India

Abstract

Artificial intelligence has the potential to transform the drug discovery process, making the process more efficient, accurate and faster. But the success of artificial intelligence depends on the availability of good data, resolution of ethical issues, and awareness of the limitations of artificial intelligencebased methods. The present article examined the benefits, challenges, and shortcomings of skills in the workplace and suggested strategies and practical actions to overcome current challenges. Data augmentation, the use of descriptive artificial intelligence, integration of artificial intelligence with traditional testing, and the potential benefits of artificial intelligence in pharmaceutical research were also discussed. Overall, the present review highlighted the potential of artificial intelligence in drug discovery and provided insight into the challenges and opportunities to realize the potential of artificial intelligence in this field. The purpose of the present article was to evaluate the ability of ChatGPT—a chatbot based on the GPT-3.5 language—to assist human authors in writing reviews. The intelligencegenerated text following our instructions was used as a starting point and evaluated for its ability to generate content. After full review, human writers will rewrite the text to ensure a balance between the recommendations and the research model.

Keywords: Artificial intelligence, Machine learning, Cognitive compting, Drug Discovery, AI Enabled Drug Discovery.

[This article belongs to Research & Reviews: A Journal of Pharmaceutical Science ]

How to cite this article:
Bhagyashri Sandip Patil, Patil Divyashree K, Patil Hetakshi V, Amruta N. Patil, Sunila.A.Patil. AI Powered Invention in Pharmaceuticals Boosting Innovation. Research & Reviews: A Journal of Pharmaceutical Science. 2024; 15(02):102-107.
How to cite this URL:
Bhagyashri Sandip Patil, Patil Divyashree K, Patil Hetakshi V, Amruta N. Patil, Sunila.A.Patil. AI Powered Invention in Pharmaceuticals Boosting Innovation. Research & Reviews: A Journal of Pharmaceutical Science. 2024; 15(02):102-107. Available from: https://journals.stmjournals.com/rrjops/article=2024/view=155990


References

1. Paul D., Sanap G., Shenoy S., Kalyane D., Kalia K., Tekade R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today. 2021;26(1): Pg.80–93. doi: 10.1016/j.drudis.2020.10.010.

2. Xu Y., Liu X., Cao X., Huang C., Liu E., Qian S., Liu X., Wu Y., Dong F., Qiu C.W., et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation (Camb). 2021 Oct 28;2(4):100179. doi: 10.1016/j.xinn.2021.100179.

3. Zhuang D., Ibrahim A.K. Deep learning for drug discovery: A study of identifying high efficacy drug compounds using a cascade transfer learning approach. Appl. Sci. 2021;11:7772. doi: 10.3390/app11177772.

4. Pu L., Naderi M., Liu T., Wu H.C., Mukhopadhyay S., Brylinski M. EToxPred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol. Toxicol. 2019;20:2. doi: 10.1186/s40360-018-0282-6.

5. Rees C. IFIP Advances in Information and Communication Technology. 1st ed. Volume 555. CRC Press/Taylor & Francis Group; Boca Raton, FL, USA: 2020. The Ethics of Artificial Intelligence; pp. 55–69. Chapman and Hall/CRC.

6. Wess G, Urmann M, Sickenberger B. Medicinal chemistry: challenges and opportunities. Angewandte Chemie International Edition. 2001 Sep 17;40(18):3341-50.

7. Chen R., Liu X., Jin S., Lin J., Liu J. Machine learning for drug-target interaction prediction. Molecules. 2018;23(9):2208. doi: 10.3390/molecules23092208.

8. Hansen K, Biegler F., Ramakrishnan R., Pronobis W., Von Lilienfeld O.A., Müller K.R., Tkatchenko A. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space. J Phys Chem Lett. 2015 Jun 18;6(12):2326-31. doi: 10.1021/acs.jpclett.5b00831.

9. Santín E.P., Solana R.R., García M.G., Suárez M.D.M.G., Díaz G.D.B., Cabal M.D.C., Rojas J.M.M., Sánchez J.I.L. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021;11:e1516. doi: 10.1002/wcms.1516.

10. Gómez-Bombarelli R., Wei J.N., Duvenaud D., Hernández-Lobato J.M., Sánchez-Lengeling B., Sheberla D., Aguilera-Iparraguirre J., Hirzel T.D., Adams R.P., Aspuru-Guzik A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Central Sci. 2018;4:268–276. doi: 10.1021/acscentsci.7b00572.

11. Nussinov R., Zhang M., Liu Y., Jang H. AlphaFold, Artificial Intelligence (AI), and Allostery. J. Phys. Chem. B. 2022;126:6372–6383. doi: 10.1021/acs.jpcb.2c04346

12. Gupta R., Srivastava D., Sahu M., Tiwari S., Ambasta R.K., Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021;25:1315–1360. doi: 10.1007/s11030-021-10217-3.

13. Zhu J., Wang J., Wang X., Gao M., Guo B., Gao M., Liu J., Yu Y., Wang L., Kong W., et al. Prediction of drug efficacy from transcriptional profiles with deep learning. Nat. Biotechnol. 2021;39:1444–1452. Doi: 10.1038/s41587-021-00946-z.

14. Dhamodharan G., Mohan C.G. Machine learning models for predicting the activity of AChE and BACE1 dual inhibitors for the treatment of Alzheimer’s disease. Mol. Divers. 2022;26:1501–1517. Doi: 10.1007/s11030-021-10282-8.

15. Melo M.C.R., Maasch J.R.M.A., de la Fuente-Nunez C. Accelerating antibiotic discovery through artificial intelligence. Commun. Biol. 2021;4:1050. Doi: 10.1038/s42003-021-02586-0.

16. Marchant J. Powerful antibiotics discovered using AI. Nature. 2020. Online ahead of print .

17. Lv H., Shi L., Berkenpas J.W., Dao F.Y., Zulfiqar H., Ding H., Zhang Y., Yang L., Cao R. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Brief. Bioinform. 2021;22:bbab320. Doi: 10.1093/bib/bbab320.

18. Monteleone S., Kellici T.F., Southey M., Bodkin M.J., Heifetz A. Methods in Molecular Biology. Volume 2390. Humana Press Inc.; Totowa, NJ, USA: 2022. Fighting COVID-19 with Artificial Intelligence; pp. 103–112.

19. Zhou Y., Wang F., Tang J., Nussinov R., Cheng F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health. 2020;2:e667–e676. Doi: 10.1016/S2589-7500(20)30192-8.

20. Verma N., Qu X., Trozzi F., Elsaied M., Karki N., Tao Y., Zoltowski B., Larson E.C., Kraka E. Predicting potential Sars-Cov-2 drugs-in depth drug database screening using deep neural network framework ssnet, classical virtual screening and docking. Int. J. Mol. Sci. 2021;22:1392. Doi: 10.3390/ijms22031392.

21. Bung N., Krishnan S.R., Bulusu G., Roy A. De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence. Future Med. Chem. 2021;13:575–585. Doi: 10.4155/fmc-2020-0262.

22. Floresta G., Zagni C., Gentile D., Patamia V., Rescifina A. Artificial Intelligence Technologies for COVID-19 De Novo Drug Design. Int. J. Mol. Sci. 2022;23:3261. Doi: 10.3390/ijms23063261.

23. [(Damian Garde, 2012 Numerate Forms Drug Discovery Collaboration with Merck to Utilize Numerate’s In Silico Drug Design Technologyaccessed on 6 December 2022)]. Available online: https://www.fiercebiotech.com/biotech/numerate-forms-drug-discovery-collaboration-merck-to-utilize-numerate-s-silico-drug-design

24. 11 Companies Using Pharma AI to Stimulate Growth in the Industry. [(accessed on 6 December 2022)]. Available online: https://www.p360.com/data360/11-companies-using-pharma-ai-to-stimulate-growth-in-the-industry-1/

25. Vamathevan J., Clark D., Czodrowski P., Dunham I., Ferran E., Lee G., Li B., Madabhushi A., Shah P., Spitzer M., et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019;18:463–477. Doi: 10.1038/s41573-019-0024-5.

26. Tsuji S., Hase T., Yachie-Kinoshita A., Nishino T., Ghosh S., Kikuchi M., Shimokawa K., Aburatani H., Kitano H., Tanaka H. Artificial intelligence-based computational framework for drug-target prioritization and inference of novel repositionable drugs for Alzheimer’s disease. Alzheimer Res. Ther. 2021;13:92. Doi: 10.1186/s13195-021-00826-3.

27. Basu T., Engel-Wolf S., Menzer O. The ethics of machine learning in medical sciences: Where do we stand today? Indian J. Dermatol. 2020;65:358–364. Doi: 10.4103/ijd.IJD_419_20.

28. Kleinberg J. Inherent Trade-Offs in Algorithmic Fairness; Proceedings of the Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems; Irvine, CA, USA. 18–22 June 2018; New York, NY, USA: Association for Computing Machinery (ACM); 2018. P. 40.

29. Silvia H., Carr N. When Worlds Collide: Protecting Physical World Interests Against Virtual World Malfeasance. Michigan Technol. Law Rev. 2020;26:279. Doi: 10.36645/mtlr.26.2.when.

30. Shimao H., Khern-am-nuai W., Kannan K., Cohen M.C. Strategic Best Response Fairness in Fair Machine Learning; Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society; New York, NY, USA. 7–9 February 2022; New York, NY, USA: Association for Computing Machinery (ACM); 2022. P. 664.

31. Kusam L., Mayank D., Nishanth K.N. Data Augmentation Using Generative Adversarial Network; Proceedings of the 2nd International Conference on Advanced Computing and Software Engineering (ICACSE) 2019; Sultanpur, India. 8 February 2019; 32. Taylor L., Nitschke G. Improving Deep Learning with Generic Data Augmentation; Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018; Piscataway, NJ, USA. 18–21 November 2018; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers Inc.; 2019. Pp. 1542–1547.

33. Minh D., Wang H.X., Li Y.F., Nguyen T.N. Explainable artificial intelligence: A comprehensive review. Artif. Intell. Rev. 2022;55:3503–3568. Doi: 10.1007/s10462-021-10088-y.

34. Arrieta A.B., Díaz-Rodríguez N., Del Ser J., Bennetot A., Tabik S., Barbado A., Garcia S., Gil-Lopez S., Molina D., Benjamins R., et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion. 2020;58:82–115. Doi: 10.1016/j.inffus.2019.12.012.

35. Naik N., Hameed B.M.Z., Shetty D.K., Swain D., Shah M., Paul R., Aggarwal K., Brahim S., Patil V., Smriti K., et al. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Front. Surg. 2022;9:266. Doi: 10.3389/fsurg.2022.862322.

36. Karimian G., Petelos E., Evers S.M.A.A. The ethical issues of the application of artificial intelligence in healthcare: A systematic scoping review. AI Ethics. 2022;2:539–551. Doi: 10.1007/s43681-021-00131-7.


Regular Issue Subscription Review Article
Volume 15
Issue 02
Received 07/05/2024
Accepted 24/06/2024
Published 11/07/2024


Login


My IP

PlumX Metrics