[{“box”:0,”content”:”n[if 992 equals=”Open Access”]n
n
Open Access
nn
n
n[/if 992]n[if 2704 equals=”Yes”]n
nThis is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.n
n[/if 2704]n
n
n
nn
n
Emran Hossain, Shilpi Islam,
n t
n
n[/foreach]
n
n[if 2099 not_equal=”Yes”]n
- [foreach 286] [if 1175 not_equal=””]n t
- Professor, Professor, , Department of Animal Science and Nutrition, Chattogram Veterinary and Animal Sciences University, Khulshi, Department of Animal Science and Nutrition, Gazipur Agricultural University, Salna, Chattogram, Gazipur, Bangladesh, Bangladesh
n[/if 1175][/foreach]
n[/if 2099][if 2099 equals=”Yes”][/if 2099]n
Abstract
n
n
nThe intricate processes of ovarian function, follicular development, and embryo viability in dairy cows are tightly regulated by a complex network of metabolites. While conventional biomarkers, such as steroid hormones, amino acids, and glucose metabolites, have been extensively studied, a growing body of evidence suggests that lesser-known metabolites play pivotal roles in bovine reproductive physiology. Dairy cattle fertility is critical for maintaining optimal milk production and herd sustainability, necessitating deeper insights into metabolic influences on ovarian function. This review explores the emerging significance of unconventional metabolic intermediates, including lipid-derived molecules, microbiota-associated metabolites, purine and pyrimidine derivatives, and extracellular matrix components, in modulating ovarian follicular dynamics and embryonic survival in dairy cows. Recent findings highlight that sphingosine-1-phosphate and resolvin D1 contribute to follicular angiogenesis and oocyte protection, while butyrate and propionate influence granulosa cell function and steroidogenesis. In dairy cows, the regulation of ovarian oxidative homeostasis is essential for sustained reproductive efficiency, with reactive oxygen species metabolites, such as hydrogen sulfide and peroxynitrite, exerting direct effects on follicular maturation and luteal function. Emerging evidence also underscores the role of plant-derived phytoestrogenic metabolites in modifying follicular estrogen signaling and embryo implantation potential, which is particularly relevant for dairy cows exposed to phytoestrogen-rich diets. Understanding the physiological roles of these metabolites provides novel insights into ovarian metabolic homeostasis, offering potential therapeutic targets for improving fertility outcomes in dairy cattle. Given the economic significance of reproductive efficiency in dairy herds, this review underscores the necessity of expanding metabolic research beyond classical pathways to unravel novel regulators of ovarian function and embryo viability in dairy cows.
nn
n
Keywords: Dairy cow, embryo viability, follicular development, lesser-known metabolites, ovarian function, reproductive efficiency
n[if 424 equals=”Regular Issue”][This article belongs to Research and Reviews : A Journal of Life Sciences ]
n
n
n
n
nEmran Hossain, Shilpi Islam. [if 2584 equals=”][226 wpautop=0 striphtml=1][else]Lesser-Known Metabolites Influencing Ovarian Function, Follicular Development, and Embryo Viability in Dairy Cows[/if 2584]. Research and Reviews : A Journal of Life Sciences. 26/07/2025; 15(03):16-27.
n
nEmran Hossain, Shilpi Islam. [if 2584 equals=”][226 striphtml=1][else]Lesser-Known Metabolites Influencing Ovarian Function, Follicular Development, and Embryo Viability in Dairy Cows[/if 2584]. Research and Reviews : A Journal of Life Sciences. 26/07/2025; 15(03):16-27. Available from: https://journals.stmjournals.com/rrjols/article=26/07/2025/view=0
nn
n
n[if 992 not_equal=”Open Access”]n
n
n[/if 992]n
nn
Browse Figures
n
n
n[/if 379]
n
n
n
References n
n[if 1104 equals=””]n
- Boruszewska D, Sinderewicz E, Kowalczyk-Zieba I, et al. The effect of lysophosphatidic acid during in vitro maturation of bovine oocytes: embryonic development and mRNA abundances of genes involved in apoptosis and oocyte competence. Mediators Inflamm. 2014;2014:670670. doi:10.1155/2014/670670.
- Goutami L, Jena SR, Swain A, Samanta L. Pathological role of reactive oxygen species on female reproduction. In: Advances in Experimental Medicine and Biology. Vol. 1391. Cham: Springer; 2022. p. 201–20. doi:10.1007/978-3-031-12966-7_12.
- Wocławek-Potocka I, Mannelli C, Boruszewska D, Kowalczyk-Zieba I, Waśniewski T, Skarzyński DJ. Diverse effects of phytoestrogens on the reproductive performance: cow as a model. Int J Endocrinol. 2013;2013:650984. doi:10.1155/2013/650984.
- Sinderewicz E, Grycmacher K, Boruszewska D, et al. Bovine ovarian follicular growth and development correlate with lysophosphatidic acid expression. Theriogenology. 2018;106:1–14. doi:10.1016/j.theriogenology.2017.09.027.
- Roth Z, Hansen PJ. Sphingosine 1-phosphate protects bovine oocytes from heat shock during maturation. Biol Reprod. 2004;71(6):2072–8. doi:10.1095/biolreprod.104.031989.
- Pate JL, Hughes CHK. Luteal prostaglandins: mechanisms regulating luteal survival and demise in ruminants. Animal. 2023;17:100739. doi:10.1016/j.animal.2023.100739.
- Lu C, Li Q, Feng X, et al. Supplementation with L-kynurenine during in vitro maturation improves bovine oocytes developmental competence through its antioxidative action. Theriogenology. 2025;233:53–63. doi:10.1016/j.theriogenology.2024.11.014.
- Dubeibe DF, Moreno JF, Saavedra JS, et al. L-arginine affects the IVM of cattle cumulus-oocyte complexes. Theriogenology. 2017;88:134-44. doi:10.1016/j.theriogenology.2016.09.017.
- Olexiková L, Fabian D, Horovská L, et al. Glutathione during post-thaw recovery culture can mitigate deleterious impact of vitrification on bovine oocytes. Antioxidants (Basel). 2023;12(1):35. doi:10.3390/antiox12010035.
- Arneson AG, Stewart JW, Byrd MKH, Perry GA, Rhoads ML. Plasma γ-aminobutyric acid (GABA) concentrations in lactating Holstein cows during thermoneutral and heat stress conditions and their relationships with circulating glucose, insulin and progesterone levels. Vet Sci. 2024;11(3):137. doi:10.3390/vetsci11030137.
- Bai Y, Zhang F, Zhang H, Xu C, Wu L, Xia C. Follicular fluid metabolite changes in dairy cows with inactive ovary identified using untargeted metabolomics. Biomed Res Int. 2020;2020:9837543. doi:10.1155/2020/9837543.
- Thompson JG. The impact of nutrition of the cumulus oocyte complex and embryo on subsequent development in ruminants. J Reprod Dev. 2006;52(1):169–75. doi:10.1262/jrd.17089.
- Ye Q, Guo W, Wu Y, et al. Butyrate drives the acetylation of histone H3K9 to activate steroidogenesis through PPARγ and PGC1α pathways in ovarian granulosa cells. FASEB J. 2021;35(2):e21316. doi:10.1096/fj.202000444R.
- Bedford A, Beckett TL, James RE, et al. Propionate affects insulin signaling and progesterone profiles in dairy heifers. Sci Rep. 2018;8(1):17629. doi:10.1038/s41598-018-35977-1.
- Shah KD, Nakao T, Kubota H. Plasma estrone sulphate (E1S) and estradiol-17β (E2β) profiles during pregnancy and their relationship with the relaxation of sacrosciatic ligament, and prediction of calving time in Holstein-Friesian cattle. Anim Reprod Sci. 2006;95(1-2):38–53. doi:10.1016/j.anireprosci.2005.09.003.
- Chimote BN, Chimote NM. Dehydroepiandrosterone (DHEA) and its sulfate (DHEA-S) in mammalian reproduction: known roles and novel paradigms. Vitam Horm. 2018;108:223–50. doi:10.1016/bs.vh.2018.02.001.
- Thibier M, Saumande J. Oestradiol-17β, progesterone and 17α-hydroxyprogesterone concentrations in jugular venous plasma in cows prior to and during oestrus. J Steroid Biochem. 1975;6(10):1433–7. doi:10.1016/0022-4731(75)90081-3.
- Abdelnour SA, Abd El-Hack ME, Arif M, et al. The usefulness of retinoic acid supplementation during in vitro oocyte maturation for the in vitro embryo production of livestock: a review. Animals (Basel). 2019;9(8):561. doi:10.3390/ani9080561.
- Turk R, Samardžija M, Bačić G. Oxidative stress and reproductive disorders in dairy cows. In: Dairy Cows: Nutrition, Fertility and Milk Production. New York: Nova Science Publishers; 2013. p. 57–
- Bilodeau-Goeseels S, Sasseville M, Guillemette C, Richard FJ. Effects of adenosine monophosphate-activated kinase activators on bovine oocyte nuclear maturation in vitro. Mol Reprod Dev. 2007;74(8):1021-34. doi:10.1002/mrd.20574.
- Pilsova A, Vagenknechtova K, Sedmik J, et al. Hydrogen sulfide and its role in female reproduction. Front Vet Sci. 2024;11:1378435.
- Keane JA, Ealy AD. An overview of reactive oxygen species damage occurring during in vitro bovine oocyte and embryo development and the efficacy of antioxidant use to limit these adverse effects. Animals (Basel). 2024;14(2). doi:10.3390/ani14020330.
- Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of antioxidant supplementation during in vitro maturation of mammalian oocytes. Vet Sci. 2022;9(8):439. doi:10.3390/vetsci9080439.
- Gutnisky C, Dalvit GC, Pintos LN, Thompson JG, Beconi MT, Cetica PD. Influence of hyaluronic acid synthesis and cumulus mucification on bovine oocyte in vitro maturation, fertilisation and embryo development. Reprod Fertil Dev. 2007;19(3):488–97.
- Smith MF, Gutierrez CG, Ricke WA, Armstrong DG, Webb R. Production of matrix metalloproteinases by cultured bovine theca and granulosa cells. Reproduction. 2005;129(1):75–87. doi:10.1530/rep.1.00381.
- McArthur ME, Irving-Rodgers HF, Byers S, Rodgers RJ. Identification and immunolocalization of decorin, versican, perlecan, nidogen, and chondroitin sulfate proteoglycans in bovine small-antral ovarian follicles. Biol Reprod. 2000;63(3):913–24. doi:10.1095/biolreprod63.3.913.
- Tamanini C, De Ambrogi M. Angiogenesis in developing follicle and corpus luteum. Reprod Domest Anim. 2004;39(4):206–16. doi:10.1111/j.1439-0531.2004.00505.x.
- Guelfi G, Lazzeri E, Zedda MT, et al. The role of genistein in mammalian reproduction. Molecules. 2023;28(21):7436. doi:10.3390/molecules28217436.
- Sirotkin AV, Alwasel SH, Harrath AH. The influence of plant isoflavones daidzein and equol on female reproductive processes. Pharmaceuticals (Basel). 2021;14(4):373. doi:10.3390/ph14040373.
- Meng Q, Li J, Wang C, Shan A. Biological function of resveratrol and its application in animal production: a review. J Anim Sci Biotechnol. 2023;14(1):25.
- Duan H, Zhang W, Dong X, et al. Quercetin ameliorates oxidative stress-induced apoptosis of granulosa cells in dairy cow follicular cysts by activating autophagy via the SIRT1/ROS/AMPK signaling pathway. J Anim Sci Biotechnol. 2024;15(1):119. doi:10.1186/s40104-024-01078-5.
nn[/if 1104][if 1104 not_equal=””]n
- [foreach 1102]n t
- [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
n[/foreach]
n[/if 1104]
n
nn[if 1114 equals=”Yes”]n
n[/if 1114]
n
n

n
Research and Reviews : A Journal of Life Sciences
n
n
n
n
nn
n
| Volume | 15 | |
| [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] | 03 | |
| Received | 29/05/2025 | |
| Accepted | 25/07/2025 | |
| Published | 26/07/2025 | |
| Retracted | ||
| Publication Time | 58 Days |
n
n
nn
n
PlumX Metrics
n
n
n[if 1746 equals=”Retracted”]n
[/if 1746]nnn
nnn”}]
