Mohit Patil,
Akanksha Dwivedi,
G.N. Darwhekar,
- Student, Department of Pharmaceutics, Acropolis Institute of Pharmaceutical Education and Research, Indore, Madhya Pradesh, India
- Associate Professor, Department of Pharmaceutics, Acropolis Institute of Pharmaceutical Education and Research, Indore, Madhya Pradesh, India
- Principal, Department of Pharmacy, Acropolis Institute of Pharmaceutical Education and Research, Indore, Madhya Pradesh, India
Abstract
This comprehensive review addresses the critical challenges and advancements in the formulation of oral medications for pediatric and geriatric populations, who often face unique pharmacokinetic and pharmacodynamic differences. The World Health Organization highlights that nearly 50% of long-term medications are not adhered to, with significant implications for health outcomes. Pediatric patients, due to their developmental stages, and geriatric patients, due to age-related physiological changes, require tailored drug formulations to enhance safety, efficacy, and acceptability. The review discusses the anatomy and physiology of the pediatric gastrointestinal tract, emphasizing how these factors influence drug absorption, distribution, metabolism, and elimination. It also explores various oral dosage forms, including solutions, suspensions, orally disintegrating tablets (ODTs), and chewable formulations, assessing their advantages and limitations in terms of patient compliance. Furthermore, the review highlights the importance of taste, texture, and volume in medication acceptability, particularly for children and older adults with dysphagia. Recent innovations in drug delivery systems, such as 3D printing and personalized medicine, are examined as potential solutions to improve adherence and therapeutic outcomes. The conclusion underscores the need for ongoing research and regulatory support to develop age-appropriate formulations that meet the specific needs of these vulnerable populations.
Keywords: Age-appropriate formulations, Pediatric pharmacokinetics, Geriatric drug delivery, Oral dosage forms, Patient compliance, Tailored drug therapy.
[This article belongs to Research & Reviews: A Journal of Drug Formulation, Development and Production ]
Mohit Patil, Akanksha Dwivedi, G.N. Darwhekar. Pediatric and Geriatric Formulation Tailoring Dosage Form for Age-Specific Needs. Research & Reviews: A Journal of Drug Formulation, Development and Production. 2025; 12(02):89-103.
Mohit Patil, Akanksha Dwivedi, G.N. Darwhekar. Pediatric and Geriatric Formulation Tailoring Dosage Form for Age-Specific Needs. Research & Reviews: A Journal of Drug Formulation, Development and Production. 2025; 12(02):89-103. Available from: https://journals.stmjournals.com/rrjodfdp/article=2025/view=222015
References
1. NICE, 2009. Medicines Adherence: Involving Patients in Decisions about Prescribed Medicines and Supporting Adherence. Available from: https://www.nice.org.uk/guidance/cg76/chapter/Introduction.
2. Tomlin, S., Cockerill, H., Costello, I., Griffith, R., Hicks, R., Sutcliffe, A., et al., 2009. Making medicines safer for children–guidance for the use of unlicensed medicines in paediatric patients. Guidelines Handbook Nursing times net.
3. Batchelor, H.K., Marriott, J.F., 2015. Paediatric pharmacokinetics: key considerations. Br. J. Clin. Pharmacol. 79 (3), 395–404.
4. Rouaz, K., Chiclana-Rodríguez, B., Nardi-Ricart, A., Su˜ n´ e-Pou, M., Mercad´ e-Frutos, D., Su˜n´ e-Negre, J.M., P´ erez-Lozano, P., García-Montoya, E., 2021. Excipients in the paediatric population: a review. Pharmaceutics 13 (3), 387. https://doi.org/ 10.3390/pharmaceutics13030387.
5. Ivansovska V, Carin MA, Rademaker CM, Dijk L, Aukje K, Teeuwisse M. Pediatric Drug Formulations: A review of Challenges and Progress. Pediatrics 2014;134:361-72.
6. Nunn AJ. Making medicines that children can take. Arch Dis Child 2003;88(5):369-71.
7. Mir AN, Geer MI. Off-label use of medicines in children. Int J Pharm Sci Res 2016;7:1820-28.
8. Yewale VN, Dharmapalan D. Promoting appropriate use of Drugs in Children. Int J Pediatr 2012;2012:906570.
9. Preis M, Breitkreutz J. Pediatric Drug Development and Dosage Form Design. AAPS PharmSciTech 2017;18:239-40.
10. Stegemann S, Ecker F, Maio M, Kraahs P, Wohlfart R, Breitkreutz J, et al. Geriatric drug therapy: Neglecting the inevitable majority. Ageing Res Rev 2010;9:384-98.
11. Shah RR. Drug development and use in the elderly: search for the right dose and dosing regimen. Br J Clin Pharmacol 2004;58:452-69.
12. Hanning SM, Lopez FL, Wong IC, Ernest TB, Tuleu C, Orlu GM. Patient-centric formulations for paediatrics and geriatrics: Similarities and differences. Int J Pharm 2016;512:355-9.
13. Gupta A, Khan MA. Challenges of pediatric formulations: a FDA science perspective. Int J Pharm 2013;457(1):346-8.
14. Strickley RG, Iwata Q, Wu S, Dahl TC. Pediatric drugs–a review of commercially available oral formulations. J Pharm Sci 2008;97(5):1731-74.
15. Lopez FL, Ernest TB, Tuleu C, Gul MO. Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms. Expert Opin Drug Deliv 2015;12(11):1727-40
16. Stoltenberg I, Breitkreutz J. Orally disintegrating mini-tablets (ODMTs)–a novel solid oral dosage form for paediatric use. Eur J Pharm Biopharm 2011;78(3):462-9.
17. Slavkova M, Breitkreutz J. Orodispersible drug formulations for children and elderly. Eur J Pharm Sci 2015;75:2-9.
18. Visser JC, Woerdenbag HJ, Hanff LM, Frijlink HW. Personalized Medicine in Pediatrics: The Clinical Potential of Orodispersible Films. AAPS PharmSciTech 2017;18:267-72.
19. Klingmann V. Acceptability of Mini-Tablets in Young Children: Results from Three Prospective Cross-over Studies. AAPS PharmSciTech 2017;18(2):263-66.
20. Chandrasekaran P, Kandasamy R. Development of Oral Flexible Tablet (OFT) Formulation for Pediatric and Geriatric Patients: a Novel Age-Appropriate Formulation Platform. AAPS PharmSciTech 2017;18:1972-86.
21. Chandrasekaran P, Kandasamy R. Development of Extended Release Oral Flexible Tablet (ER-OFT) Formulation for Pediatric and Geriatric Compliance: an Age-Appropriate Formulation. AAPS PharmSciTech 2017;18:2394-409.
22. Preis M, Öblom H. 3D-Printed Drugs for Children-Are We Ready Yet? AAPS PharmSciTech 2017;18(2):303-08.
23. Yoder, S.M., Kindel, T.L., Tso, P., 2010. Chapter Eight – Using the Lymph Fistula Rat Model to Study Incretin Secretion. In: Litwack, G. (Ed.), Vitamins & Hormones, vol. 84. Academic Press, pp. 221–249.
24. Yu, G., Zheng, Q.-S., Li, G.-F., 2014. Similarities and differences in gastrointestinal physiology between neonates and adults: a physiologically based pharmacokinetic modeling perspective. AAPS J. 16 (6), 1162–1166
25. Singh, V., 2014. Textbook of Clinical Embryology – E-book. Elsevier Health Sciences.
26. Matsuo, K., Palmer, J.B., 2008. Anatomy and physiology of feeding and swallowing: normal and abnormal. Phys. Med. Rehabil. Clin. N Am. 19 (4), 691–707.
27. EMA, 2006. Reflection Paper: Formulations of Choice for the Paediatric Population. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scien tific_guideline/2009/09/WC500003782.pdf.
28. Chai, J., 2018. Introductory Chapter: Esophagus and Esophageal Cancer.
29. Cordova-Fraga, T., Sosa, M., Wiechers, C., Roca-Chiapas, J.M.D.l., Moreles, A.M., Bernal- Alvarado, J., Huerta-Franco, R., 2008. Effects of anatomical position on esophageal transit time: a biomagnetic diagnostic technique. World J. Gastroenterol. 14 (37), 5707. https://doi.org/10.3748/wjg.14.5707.
30. Margolis, K.G., Picoraro, J.A., 2017. In: Fetal and Neonatal Physiology. Elsevier, pp. 881–888.e2. https://doi.org/10.1016/B978-0-323-35214-7.00090-1.
31. Bar-Shalom, D., Rose, K., 2014. Pediatric Formulations: A Roadmap. Springer, New York.
32. Lu, H., Rosenbaum, S., 2014. Developmental pharmacokinetics in pediatric populations. J. Pediatr. Pharmacol. Ther. 19 (4), 262–276.
33. Nader, A.M., Quinney, S.K., Fadda, H.M., Foster, D.R., 2016. Effect of gastric fluid volume on the in vitro dissolution and in vivo absorption of BCS class II drugs: a case study with Nifedipine. AAPS J. 18 (4), 981–988
34. Fernandez, E., Perez, R., Hernandez, A., Tejada, P., Arteta, M., Ramos, J.T., 2011. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics 3 (1), 53–72.
35. Weaver, L.T., Austin, S., Cole, T.J., 1991. Small intestinal length: a factor essential for gut adaptation. Gut 32 (11), 1321–1323.
36. Mirjalili, S.A., Tarr, G., Stringer, M.D., 2017. The length of the large intestine in children determined by computed tomography scan. Clin. Anatomy (New York, NY) 30 (7), 887–893.
37. Lander, A., Newman, J., 2013. Paediatric anatomy. Surgery (Oxford) 31 (3), 101–105.
38. Ginsberg, G., Hattis, D., Miller, R., Sonawane, B., 2004. Pediatric pharmacokinetic data: implications for environmental risk assessment for children. Pediatrics 113 (Supplement 3), 973–983.
39. Michielan, A., D’Inc`a, R., 2015. Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm. 2015, 1–10.
40. McOmber, M.E., Ou, C.-N., Shulman, R.J., 2010. Effects of timing, sex, and age on site- specific gastrointestinal permeability testing in children and adults. J. Pediatr. Gastroenterol. Nutr. 50 (3), 269–275.
41. Khonsari, S., Suganthy, M., Burczynska, B., Dang, V., Choudhury, M., Pachenari, A., 2016. A comparative study of bifidobacteria in human babies and adults. Biosci. Microbiota Food Health 35 (2), 97–103.
42. Hollister, E.B., Riehle, K., Luna, R.A., Weidler, E.M., Rubio-Gonzales, M., Mistretta, T.-A., Raza, S., Doddapaneni, H.V., Metcalf, G.A., Muzny, D.M., Gibbs, R.A., Petrosino, J. F., Shulman, R.J., Versalovic, J., 2015. Structure and function of the healthy pre- adolescent pediatric gut microbiome. Microbiome 3 (1). https://doi.org/10.1186/ s40168-015-0101-x.
43. Castaner, O., Goday, A., Park, Y.-M., Lee, S.-H., Magkos, F., Shiow, S.-A., Schr¨ oder, H., 2018. The gut microbiome profile in obesity: a systematic review. Int. J. Endocrinol. 2018, 1–9..
43. Ringel-Kulka, T., Cheng, J., Ringel, Y., Saloj¨arvi, J., Carroll, I., Palva, A., et al., 2013. Intestinal microbiota in Healthy U.S. Young Children and Adults—a high throughput microarray analysis. PLoS ONE 8 (5), e64315.
44. Mulberg, A.E., Murphy, D., Dunne, J., Mathis, L.L., 2013. Pediatric Drug Development. Wiley.
45. Amin, M.L., 2013. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 7, 27–34.
46. Maternal, B.S., 2017. Fetal, & Neonatal Physiology – E-Book: A Clinical Perspective. Elsevier Health Sciences.
47. Prasad, B., Gaedigk, A., Vrana, M., Gaedigk, R., Leeder, J.S., Salphati, L., Chu, X., Xiao, G., Hop, CECA, Evers, R., Gan, L., Unadkat, J.D., 2016. Ontogeny of hepatic drug transporters as quantified by LC-MS/MS proteomics. Clin. Pharmacol. Ther. 100 (4), 362–370.
48. Fakhoury, M., Litalien, C., Medard, Y., Cav´ e, H., Ezzahir, N., Peuchmaur, M., Jacqz- Aigrain, E., 2005. Localization and mRNA expression of CYP3A and P-glycoprotein in human duodenum as a function of age. Drug Metab. Dispos. 33 (11), 1603–1607.
49 .Batchelor, H.K., Marriott, J.F., 2015. Paediatric pharmacokinetics: key considerations. Br. J. Clin. Pharmacol. 79 (3), 395–404.
50. Lu, H., Rosenbaum, S., 2014. Developmental pharmacokinetics in pediatric populations. J. Pediatr. Pharmacol. Ther. 19 (4), 262–276.
51. Yochana, S., Yu, M., Alvi, M., Varenya, S., Chatterjee, P., 2012. Pharmaceutical excipients and pediatric formulations. Chimica oggi/Chem. Today 30 (5).
52. Van Riet-Nales, D.A., Kozarewicz, P., Aylward, B., de Vries, R., Egberts, T.C.G., Rademaker, C.M.A., Schobben, A.F.A.M., 2017. Paediatric drug development and formulation design—a European perspective. AAPS PharmSciTech. 18 (2), 241–249
53. Fernandez, E., Perez, R., Hernandez, A., Tejada, P., Arteta, M., Ramos, J.T., 2011. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics 3 (1), 53–72.
54. Bartelink, I.H., Rademaker, C.M.A., Schobben, A.F.A.M., van den Anker, J.N., 2006. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin. Pharmacokinet. 45 (11), 1077–1097.
55. Stewart, C., Hampton, E., 1987. Effect of maturation on drug disposition in pediatric patients. Clin. Pharm. 6 (7), 548–564.
56. Lange, D., Pavao, J.H., Wu, J., Klausner, M., 1997. Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers. J. Clin. Pharmacol. 37 (6), 535–540.
57. Strolin Benedetti, M., Baltes, E., 2003. Drug metabolism and disposition in children. Fundam. Clin. Pharmacol. 17 (3), 281–299.
58. Moini, J., 2019. Chapter 5 – Epidemiology of Diet and Diabetes Mellitus. In: Moini, J. (Ed.), Epidemiology of Diabetes, Elsevier, 2019, pp. 57–73.
59. Arzani, G., Haeri, A., Daeihamed, M., Bakhtiari-Kaboutaraki, H., Dadashzadeh, S., 2015. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt- enriched vesicles and carrier surface charge. Int. J. Nanomed. 10, 4797–4813.
60. Shaffer, E.A., Zahavi, I., Gall, D.G., 1985. Postnatal development of hepatic bile formation in the rabbit. Dig. Dis. Sci. 30 (6), 558–563
61. McLeod, H., Relling, M., Crom, W., Silverstein, K., Groom, S., Rodman, J., et al., 1992. Disposition of antineoplastic agents in the very young child. British J. Cancer Suppl. 18, S23–S29.
62. Jailing, B., 1974. Plasma and cerebrospinal fluid concentrations of phenobarbital in infants given single doses. Dev. Med. Child Neurol. 16 (6), 781–793.
63. Sanders, T., Liu, Y., Buchner, V., Tchounwou, P.B., 2009. Neurotoxic effects and biomarkers of lead exposure: a review. Rev. Environ. Health 24 (1), 15–45.
64. Valeur, K.S., Hertel, S.A., Lundstrøm, K.E., Holst, H., 2018. The cumulative daily tolerance levels of potentially toxic excipients ethanol and propylene glycol are commonly exceeded in neonates and infants. Basic Clin. Pharmacol. Toxicol. 122 (5), 523–530.
65. Ku, L.C., Smith, P.B., 2015. Dosing in neonates: special considerations in physiology and trial design. Pediatr. Res. 77 (1), 2–9.
66. Zanger, U.M., Schwab, M., 2013. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138 (1), 103–141.
67. de Wildt, S.N., Kearns, G.L., Leeder, J.S., van den Anker, J.N., 1999. Cytochrome P450 3A. Clin. Pharmacokinet. 37 (6), 485–505.
68. Gibbs, J.P., Murray, G., Risler, L., Chien, J.Y., Dev, R., Slattery, J.T., 1997. Age- dependent tetrahydrothiophenium ion formation in young children and adults receiving high-dose busulfan. Cancer Res. 57 (24), 5509–5516.
69. Lammert, C., Bjornsson, E., Niklasson, A., Chalasani, N., 2010. Oral medications with significant hepatic metabolism at higher risk for hepatic adverse events. Hepatology (Baltimore, MD) 51 (2), 615–620..
70. Gandhi, M.N., Malde, A.D., Kudalkar, A.G., Karnik, H.S., 2011. A Practical Approach to Anesthesia for Emergency Surgery. Jaypee Brothers, Medical Publishers Pvt. Limited.
71. Muhari-Stark, E., Burckart, G.J., 2018. Glomerular filtration rate estimation formulas for pediatric and neonatal use. J. Pediatr. Pharmacol. Ther. 23 (6), 424–431.
72. Tayman, C., Rayyan, M., Allegaert, K., 2011. Neonatal pharmacology: extensive interindividual variability despite limited size. J. Pediatric Pharmacol. Therap. 16 (3), 170–184.
73. Strolin Benedetti, M., Whomsley, R., Baltes, E.L., 2005. Differences in absorption, distribution, metabolism and excretion of xenobiotics between the paediatric and adult populations. Expert Opin. Drug Metab. Toxicol. 1 (3), 447–471.
74. Alcorn, J., Mcnamara, P., 2008. Using ontogeny information to build predictive models for drug elimination. Drug Disc. Today 13 (11-12), 507–512.
75. Lu, J.-D., Xue, J., 2019. Chapter 101 – Poisoning: Kinetics to Therapeutics. In: Ronco, C., Bellomo, R., Kellum, J.A., Ricci, Z. (Eds.), Critical Care Nephrology, third ed. Philadelphia: Content Repository Only!, pp. 600–29.e7.
76. Lajoinie A, Henin E, Nguyen KA, Malik S, Mimouni Y, Sapori JM, et al. Oral drug dosage forms administered to hospitalized children: Analysis of 117,665 oral administrations in a French paediatric hospital over a 1-year period. Int J Pharm 2016;500:336-44.
77. Kumar A, Rawlings RD, Beaman DC. The mystery ingredients: sweeteners, flavorings, dyes, and preservatives in analgesic/antipyretic, antihistamine/decongestant, cough and cold, antidiarrheal, and liquid theophylline preparations. Pediatrics 1993;91(5):927-33.
78. Kumar A, Weatherly MR, Beaman DC. Sweeteners, f lavorings, and dyes in antibiotic preparations. Pediatrics 1991;87(3):352-60.
79. “Inactive” Ingredients in Pharmaceutical products. Committee of Drugs. American Academy of pediatrics. Pediatrics 1985;76;635-43. “Inactive” Ingredients in Pharmaceutical Products: Update (Subject Review). Committee of Drugs. American Academy of pediatrics. Pediatrics 1997;99:268-7
80.http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003782.pdf.
81. Davies HE, Tuleu C. Medicines for children: a matter of taste. J Pediatr 2008;153(5):599-604.
82. Pawar S, Kumar A. Issues in the formulation of drugs for oral use in children: role of excipients. Paediatric Drugs 2002;4(6):371-9.
83. Venables R, Batchelor H, Hodson J, Stirling H, Marriott J. Determination of formulation factors that affect oral medicines acceptability in a domiciliary paediatric population. Int J Pharm 2015;480:55-62.
84. Roberts R, Rodriquez W, Murphy D, Crescenzi T. Paediatric Drug Labelling. Improving the Safety and Efficacy of Pediatric Therapies. JAMA Pediatr 2003;290:905-11.
85. Cun ˜a M, Vila Jato JL, Torres D. Controlled-release liquid suspensions based on ion-exchange particles entrapped within acrylic microcapsules. Int J Pharm 2000;199(2):1518
86. Haznar-Garbacz D, Garbacz G, Eisenacher F, et al. An oral-controlled release drug delivery system for liquid and semisolid drug formulations. AAPS PharmSciTech 2011;12(4):11835
87. Mishra B, Sahoo BL, Mishra M, et al. Design of a controlled release liquid formulation of lamotrigine. DARU J Pharma Sci 2011;19(2):126—37
88. Buck ML, Health C. Alternative forms of oral drug delivery for pediatric patients. Pediatr Pharmacother 2013;19:3
89. Childress A, Sallee FR. The use of methylphenidate hydrochloride extended release oral suspension for the treatment of ADHD. Expert Rev Neurother 2013;13(9):979—88
90. Amrol D. Single-dose azithromycin microsphere formulation: a novel delivery system for antibiotics. Int J Nanomed 2007;2(1):9—12
91. Kytariolos J, Charkoftaki G, Smith JR, et al. Stability and physicochemical characterization of novel milk-based oral formulations. Int J Pharm 2013;444(1-2):128—38
92. Charkoftaki G, Kytariolos J, Macheras P. Novel milk-based oral formulations: proof of concept. Int J Pharm 2010;390(2):150—9
93. JustMilk. Safely delivering drugs and nutrients to breastfeeding infants. Available from: http://www.justmilk.org [Last accessed 04 June 2015]
94. Gerrard SE, Baniecki ML, Sokal DC, et al. A nipple shield delivery system for oral drug delivery to breastfeeding infants: microbicide delivery to inactivate HIV. Int J Pharm 2012;434(1-2):224—34
95. Monteagudo E, Langenheim M, Salerno C, et al. Pharmaceutical optimization of lipid-based dosage forms for the improvement of taste-masking, chemical stability and solubilizing capacity of phenobarbital. Drug Develop Indust Pharm 2014;40(6):783—92
96. Tan A, Rao S, Prestidge CA. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharma Res 2013;30(12):2993—3017
97. Kraus DM, Stohlmeyer LA, Hannon PR, et al. Effectiveness and infant acceptance of the Rx medibottle versus the oral syringe. Pharmacotherapy 2001;21(4):416—23
98. Walsh J, Bickmann D, Breitkreutz J, et al. Delivery devices for the administration of paediatric formulations: overview of current practice, challenges and recent developments. Int J Pharm 2011;415(1-2):221—31
99. Richter F. Sipping devices: new technologies. Available from: http://www.raumedic.com/fileadmin/user_upload/ PDF/drug-delivery-sipping-device.pdf [Last accessed 19 January 2015]
100. Meltzer EO, Welch MJ, Ostrom NK. Pill swallowing ability and training in children 6 to 11 years of age. Clin Pediatr 2006;45(8):725—33
101. Schiele JT, Schneider H, Quinzler R, et al. Two techniques to make swallowing pills easier. Ann Family Med 2014;12(6):550—2
102. Margiocco ML, Warren J, Borgarelli M, et al. Analysis of weight uniformity, content uniformity and 30-day stability in halves and quarters of routinely prescribed cardiovascular medications. J Veter Cardiol 2009;11(1):31—9
103. van Riet-Nales DA, Doeve ME, Nicia AE, et al. The accuracy, precision and sustainability of different techniques for tablet subdivision: breaking by hand and the use of tablet splitters or a kitchen knife. Int J Pharm 2014;466(1-2):44—51
104. Kayitare E, Vervaet C, Ntawukulilyayo JD, et al. Development of fixed dose combination tablets containing zidovudine and lamivudine for paediatric applications. Int J Pharm 2009;370(1-2):41—6
105. Solomon L, Kaplan AS. Method of administering a partial dose using segmented pharmaceutical tablet. US0031494; 2007
106. Laukamp EJ, Thommes M, Breitkreutz J. Hot-melt extruded drug-loaded rods: Evaluation of the mechanical properties for individual dosing via the Solid Dosage Pen. Int J Pharm 2014;475(1-2):344—50
107. Wening K, Breitkreutz J. Novel delivery device for monolithical solid oral dosage forms for personalized medicine. Int J Pharm 2010;395(1-2):174—81
108. Thomson SA, Tuleu C, Wong IC, et al. Minitablets: new modality to deliver medicines to preschool-aged children. Pediatrics 2009;123(2):235—8
109. Spomer N, Klingmann V, Stoltenberg I, et al. Acceptance of uncoated mini tablets in young children: results from a prospective exploratory cross-over study. Arch Dis Childhood 2012;97(3):283–6 Proof-of-concept of the acceptability of mini-tablets in very young children.
110. Zedler BK, Kakad P, Colilla S, et al. Does packaging with a calendar feature improve adherence to self-administered medication for long-term use? A systematic review. Clin Therap 2011;33(1):62– 73
111. Liang AC, Chen LH. Fast-dissolving intraoral drug delivery systems. Expert Opin Ther Patents 2001;11(6):981– 6
112. Stoltenberg I, Breitkreutz J. Orally disintegrating mini-tablets (ODMTs)–a novel solid oral dosage form for paediatric use. Eur J Pharma Biopharma 2011;78(3):462– 9
113. Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Cont Rel 2011;153(2):106–16 4
114. Walsh J, Cram A, Woertz K, et al. Playing hide and seek with poorly tasting paediatric medicines: do not forget the excipients. Adv Drug Delivery Rev 2014;73:14– 33 A review of taste-masking strategies.
115. Stange U, Fuhrling C, Gieseler H. Taste masking of naproxen sodium granules by fluid-bed coating. Pharma Develop Technol 2014;19(2):137– 47
116. Venkatesh GM, Stevens PJ, Lai JW. Development of orally disintegrating tablets comprising controlled-release multiparticulate beads. Drug Develop Indust Pharma 2012;38(12):1428–40
117. Shukla D, Mouth Dissolving Tablets I. An overview of formulation technology. Scie Pharma 2009;77(2):309–26
118. Al-khattawi A, Mohammed AR. Compressed orally disintegrating tablets excipients evolution and formulation strategies. Expert Opin Drug Delivery 2013;10(5):651—63
119. Douroumis D. Orally disintegrating dosage forms and taste-masking technologies. Expert Opin Drug Delivery 2011;8(5):665—75
120. Badgujar BP, Mundada AS. The technologies used for developing orally disintegrating tablets: a review. Acta Pharma 2011;61(2):117–39 A review of orally disintegrating tablets.
121. Pharmaceutical & Medical Packaging news. New routes in oral dosing 2011. Available from: http://www.pmpnews. com/passport/oraldosing.html [Last accessed 19 January 2015]
122. Badgujar BP, Mundada AS. The technologies used for developing orally disintegrating tablets: a review. Acta Pharma 2011;61(2):117—39
123. Aprecia Pharmaceuticals. ZipDose Technology 2014. Available from: https://www.aprecia.com/zipdose platform/zipdose-technology.php [Last accessed 19 January 2015]
124. Food and Drugs Administration. PREVACID medication guide. Available from: http://www.fda.gov/downloads/ Drugs/DrugSafety/UCM322354.pdf [Last accessed 19 January 2015]
125. Hoffmann EM, Breitenbach A. Advances in orodispersible films for drug delivery. Expert Opin Drug Delivery 2011;8(3):299– 316 A review of orodispersible films.
126. Mura P, Mennini N, Kosalec I, et al. Amidated pectin-based wafers for econazole buccal delivery: Formulation optimization and antimicrobial efficacy estimation. Carbohydr Polym 2015;121:231—40
127. Maniruzzaman M, Boateng JS, Snowden MJ, et al. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharm 2012;2012:436763
128. Yu DG, Shen XX, Branford-White C, et al. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology 2009;20(5):1—9
129. Buanz AB, Saunders MH, Basit AW, et al. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res 2011;28(10):2386—92
130. Nagaraju T, Gowthami R, Rajashekar M, et al. Comprehensive review on oral disintegrating films. Curr Drug Delivery 2013;10(1):96—108
131. Market Wired. Paladin submits patent application for thinsol, a novel oral ingestible film composition delivery system 2007. Available from: http:// www.marketwired.com/press-release/ paladin-submits-patent-application thinsol-novel-oral-ingestible-film composition-tsx-plb-789353.htm [Last accessed 19 January 2015]
132. Allen JD, Cobb ME, Hillman RS, et al. Integrated drug dosage form and metering system. US4712460; 1987
133. Food and Drugs Administration. ZUPLENZ Oral Soluble Film prescribing information 2013. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/022524s002lbl.pdf [Last accessed 19 January 2015]
134. Mishra B, Sharma G, Shukla D. Investigation of organoleptic characteristics in the development of soft chews of calcium carbonate as mineral supplement. Yakugaku Zasshi 2009;129(12):1537—44
135. Michele TM, Knorr B, Vadas EB, et al. Safety of chewable tablets for children. J Asthma 2002;39(5):391—403
136. European Medicines Agency. Reflection paper Formulations of choice for the paediatric population. (EMEA/CHMP/ PEG/194810/2005). Available from: http://www.ema.europa.eu/docs/en_GB/ document_library/Scientific_ guideline/2009/09/WC500003782.pdf [Last accessed 06 July 2015]
137. Paulsen NE, Johnson R, Coffee M. Process for manufacturing chewable dosage forms for drug delivery and products thereof. US 8114455; 2012
138. Hassan EM, Kindt WW, Roger E. Chewable soft capsule. US08765174; 2014
139. Ko C, Ko JJ, Ko Y, et al. Chewable softgel capsule, useful for encasing orally ingestible articles such as medicines and nutraceuticals, comprises an outer shell composition comprising gelatin, plasticizer, starch and an anti-tacking and softening agent. US092548; 2010
140. Jo´ja ´rt I, Kelemen A, Ka´sa P, et al. Tracking of the post-compressional behaviour of chewing gum tablets. Composites Part B: Engineering 2013;49:1– 5
141. Hyrup B, Andersen C, Andreasen LV, et al. The MediChew technology platform. Expert Opin Drug Delivery 2005;2(5):927– 33
| Volume | 12 |
| Issue | 02 |
| Received | 18/06/2025 |
| Accepted | 28/06/2025 |
| Published | 02/08/2025 |
| Publication Time | 45 Days |
PlumX Metrics

