Exploring the Potential of Allium sativum Phytocompounds as B-cell Leukemia 2 Inhibitors in Acute Lymphoblastic Leukemia: Molecular Docking Study

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2024 | Volume :13 | Issue : 02 | Page : –
By

Santhiya K,

  1. Student, Department of Bioinformatics, Bionome, Bengaluru, Karnataka, India

Abstract

Objective: Acute lymphoblastic leukemia (ALL) is a lymphoid progenitor cells malignancy that could be treated with plant based drugs, thus, alleviating the off-target effects caused by the conventional chemotherapy. Since ancient days, Allium sativum is an integral part of traditional medicine and an excellent antimicrobial, antioxidant, and antiproliferative agent. Hence, this study aims to assess the anti-leukemic potential of A.sativum phytoconstituents as the B-cell leukemia 2 protein (Bcl-2) natural inhibitor drug. Methods: 25 phytoconstituents of A.sativum were subjected to screening of pharmacological properties, drug likeliness, toxicity, and absorption, distribution, metabolism, and excretion (ADME) characteristics using SWISS ADME and ADMET 2.0 tools respectively for their potential to serve as drug leads or ligands. Bcl-2 protein, a B-cell apoptosis regulator along with their homologous chains A, B, C, D, E, F are extracted from the protein data bank (PDB) and purified using protein visualizer tool discovery studio. The A.sativum ligands and Bcl-2 target were docked by PyRx tool. Results: The target protein stability and conformation was predicted by 93% percentage favoured regions of amino acids in the Ramachandran plot obtained through different combinations of phi and psi angles. Overall, five ligands of A.sativum namely Kaempferol, Quercetin, 1-Ethylquinolinium iodide, Carvacrol, and Eugenol had the best binding affinities with target protein Bcl-2 with acceptable ADME ranges and other properties, thereby, promoting them as safe drug candidates. Conclusion: The renowned anti-cancerous properties of Kaempferol, Quercetin, 1-Ethylquinolinium iodide, Carvacrol, and Eugenol are proved to inhibit the Bcl-2 target protein in ALL through these molecular interactions.

Keywords: Allium sativum, anti-leukemic, Bcl-2 protein, Acute lymphoblastic leukemia, molecular docking, phytocompounds, ADME screening, Bcl-2 inhibitors.

[This article belongs to Research & Reviews : Journal of Computational Biology (rrjocb)]

How to cite this article:
Santhiya K. Exploring the Potential of Allium sativum Phytocompounds as B-cell Leukemia 2 Inhibitors in Acute Lymphoblastic Leukemia: Molecular Docking Study. Research & Reviews : Journal of Computational Biology. 2024; 13(02):-.
How to cite this URL:
Santhiya K. Exploring the Potential of Allium sativum Phytocompounds as B-cell Leukemia 2 Inhibitors in Acute Lymphoblastic Leukemia: Molecular Docking Study. Research & Reviews : Journal of Computational Biology. 2024; 13(02):-. Available from: https://journals.stmjournals.com/rrjocb/article=2024/view=180805

References

1. Terwilliger, T., & Abdul-Hay, M.. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer Journal, 7(6), e577–e577. doi:10.1038/bcj.2017.53 2. National Cancer Institute. SEER cancer statistics review, 1992-2020:Leukemia, annual incidence rates (acute lymphocytic leukemia). 3. Blanco-Lopez, J., Iguacel, I., Pisanu, S., Almeida, C., Steliarova-Foucher, E., Sierens, C.Huybrechts, I.. Role of maternal diet in the risk of childhood acute leukemia: A systematic review and meta-analysis. International Journal of Environmental Research and Public Health, (2023), 20(7), 5428. doi:10.3390/ijerph20075428 4. Ekpa QL, Akahara PC, Anderson AM, Adekoya OO, Ajayi OO, Alabi PO, Okobi OE, Jaiyeola O, Ekanem MS. A Review of Acute Lymphocytic Leukemia (ALL) in the Pediatric Population: Evaluating Current Trends and Changes in Guidelines in the Past Decade. Cureus. 2023 Dec;15(12).. 5. Huang, F.-L., Yu, S.-J., & Li, C.-L. (2021). Role of autophagy and apoptosis in acute lymphoblastic leukemia. Cancer Control: Journal of the Moffitt Cancer Center, 28, 107327482110191. doi:10.1177/10732748211019138 6. Olivas-Aguirre, M., Pottosin, I., & Dobrovinskaya, O. (2019). Mitochondria as emerging targets for therapies against T cell acute lymphoblastic leukemia. Journal of Leukocyte Biology, 105(5), 935–946. doi:10.1002/jlb.5vmr0818-330rr. 7. Hogarth, L. A., & Hall, A. G. Increased BAX expression is associated with an increased risk of relapse in childhood acute lymphocytic leukemia. Blood, 1999,93(8). Retrieved from https://pubmed.ncbi.nlm.nih.gov/10194447/ 8. Moazami-Goudarzi, M., Farshdousti-Hagh, M., Hoseinpour-Feizi, A., Talebi, M., Movassaghpour-Akbari, A. A., Shams-Asanjan, K., Eyvazi-Ziyaee, J., & Seifi, M. The acute lymphoblastic leukemia prognostic scoring whether it is possible by BCL-2, BAX gene promoter genotyping. Caspian journal of internal medicine, 2016, 7(2), 105–113. 9. Ghasemi A, Khanzadeh T, Zadi Heydarabad M, et al. Evaluation of BAX and BCL-2 gene expression and apoptosis induction in acute lymphoblastic leukemia cell line CCRFCEM after high-dose prednisolone treatment. Asian Pac J Cancer Prev. 2018;19(8):2319–2323. 10. Iacovelli S, Ricciardi MR, Allegretti M, et al. Co-targeting of Bcl-2 and mTOR pathway triggers synergistic apoptosis in BH3 mimetics resistant acute lymphoblastic leukemia. Oncotarget. 2015;6(31):32089–32103. 11. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t (14; 18) chromosome translocation. Science. 1984 Nov 30;226(4678):1097-9. 12. Tsujimoto Y, Jaffe E, Cossman J, Gorham J, Nowell PC, Croce CM. Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t (11; 14) chromosome translocation. Nature. 1985 May 23;315(6017):340-3. 13. Korsmeyer, S. J., Shutter, J. R., Veis, D. J., Merry, D. E., & Oltvai, Z. N. Bcl-2/Bax: A rheostat that regulates an anti-oxidant pathway and cell death. Seminars in Cancer Biology, 1993,4(6), 327-332. 14. Jabbour E, O’Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer 2015; 121: 2517–2528. 15. Zhang, Y., Liu, X., Ruan, J., Zhuang, X., Zhang, X., & Li, Z. Phytochemicals of garlic: Promising candidates for cancer therapy. Biomedecine & Pharmacotherapie [Biomedicine & Pharmacotherapy], 2020,123(109730), 109730. doi:10.1016/j.biopha.2019.109730 16. Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., … Mering, C. von.. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 2019,47(D1), D607–D613. doi:10.1093/nar/gky1131 17. Berman, H. M.. The Protein Data Bank. Nucleic Acids Research, 2000,28(1), 235–242. doi:10.1093/nar/28.1.235 18. Zardecki, C., Dutta, S., Goodsell, D. S., Lowe, R., Voigt, M., & Burley, S. K.. PDB‐101: Educational resources supporting molecular explorations through biology and medicine. Protein Science: A Publication of the Protein Society, 2022 31(1), 129–140. doi:10.1002/pro.4200 19. Baroroh, U., Biotek, M., Muscifa, Z. S., Destiarani, W., Rohmatullah, F. G., & Yusuf, M. (2023). Molecular interaction analysis and visualization of protein-ligand docking using Biovia Discovery Studio Visualizer. Indonesian Journal of Computational Biology (IJCB), 2(1), 22-30. 20. IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry And Therapeutics, Karthikeyan Mohanraj, Bagavathy Shanmugam Karthikeyan, R.P. Vivek-Ananth, R.P. Bharath Chand, S.R. Aparna, P. Mangalapandi and Areejit Samal*, Scientific Reports 8:4329 (2018). 21. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L. PubChem in 2021: new data content and improved web interfaces. Nucleic acids research. 2021 Jan 8;49(D1):D1388-95. 22. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports. 2017 Mar 3;7(1):42717.. 23. Wang, H., Irigoyen, S., Liu, J., Ramasamy, M., Padilla, C., Bedre, R., Yang, C., Thapa, S. P., Mulgaonkar, N., Ancona, V., He, P., Coaker, G., Fernando, S., & Mandadi, K. K. Inhibition of a conserved bacterial dual-specificity phosphatase confers plant tolerance to Candidatus Liberibacter spp. iScience, 2024,27(3), 109232. https://doi.org/10.1016/j.isci.2024.109232 24. Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic acids research, 2021,49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255 25. Gadaleta, D., Vuković, K., Toma, C., Lavado, G. J., Karmaus, A. L., Mansouri, K., Kleinstreuer, N. C., Benfenati, E., & Roncaglioni, A. SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. Journal of cheminformatics, 2019,11(1), 58. https://doi.org/10.1186/s13321-019-0383-2 26. Kondapuram SK, Sarvagalla S, Coumar MS. Docking-based virtual screening using PyRx Tool: autophagy target Vps34 as a case study. InMolecular Docking for Computer-Aided Drug Design 2021 Jan 1 (pp. 463-477). Academic Press.. 27. Devaurs D, Antunes DA, Hall-Swan S, Mitchell N, Moll M, Lizée G, Kavraki LE. Using parallelized incremental meta-docking can solve the conformational sampling issue when docking large ligands to proteins. BMC molecular and cell biology. 2019 Dec;20:1-5. 28. Kelekar, A., Chang, B. S., Harlan, J. E., Fesik, S. W., & Thompson, C. B. Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL. Molecular and cellular biology, (1997). 17(12), 7040–7046. https://doi.org/10.1128/MCB.17.12.7040 29. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995 Jan 27;80(2):285-91. 30. Strasser A. The role of BH3-only proteins in the immune system. Nature reviews. Immunology, 2005,5(3), 189–200. https://doi.org/10.1038/nri1568 31. Lee, A.-J., Liao, H.-J., & Hong, J.-R. Overexpression of Bcl2 and Bcl2L1 can suppress Betanodavirus-induced type III cell death and autophagy induction in GF-1 cells. Symmetry, 2022,14(2), 360. doi:10.3390/sym14020360 32. Marquez, R. T., & Xu, L. Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. American journal of cancer research, 20122(2), 214–221. 33. Burton, T. R., & Gibson, S. B. The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell death and differentiation, 2009,16(4), 515–523. https://doi.org/10.1038/cdd.2008.185 34. Li, X., Miao, X., Wang, H., Xu, Z., & Li, B. The tissue dependent interactions between p53 and Bcl-2 in vivo. Oncotarget, 2015,6(34), 35699–35709. https://doi.org/10.18632/oncotarget.5372. 35. Kanehisa, M., & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 2000, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27 36. Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein science : a publication of the Protein Society, 27(1), 129–134. https://doi.org/10.1002/pro.3289 37. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Membrane Proteins. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26878/ 38. Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y. M., Buso, N., & Lopez, R. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic acids research, 201543(W1), W580–W584. https://doi.org/10.1093/nar/gkv279 39. Mehrotra S, Bg PK, Nayak PG, Joseph A, Manikkath J. Recent progress in the oral delivery of therapeutic peptides and proteins: overview of pharmaceutical strategies to overcome absorption hurdles. Advanced Pharmaceutical Bulletin. 2023 Aug 26;14(1):11-33.. 40. Ranjith, D., & Ravikumar, C. (). SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in Ipomoea mauritiana Jacq. Journal of Pharmacognosy and Phytochemistry, 2019, 8, 2063-2073. 41. Jendele, L., Krivak, R., Skoda, P., Novotny, M., & Hoksza, D. (). PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic acids research, 2019,47(W1), W345–W349. https://doi.org/10.1093/nar/gkz424 42. Binkowski, T. A., Naghibzadeh, S., & Liang, J. (2003). CASTp: Computed Atlas of Surface Topography of proteins. Nucleic acids research, 31(13), 3352–3355. https://doi.org/10.1093/nar/gkg512 43. Ayaz, E., & Alpsoy, H. C. (2007). Sarimsak (Allium sativum) ve geleneksel tedavide kullanimi [Garlic (Allium sativum) and traditional medicine]. Turkiye parazitolojii dergisi, 31(2), 145–149. 44. Tesfaye A. Revealing the therapeutic uses of garlic (Allium sativum) and its potential for drug discovery. The Scientific World Journal. 2021;2021(1):8817288. 45. Shang, A., Cao, S. Y., Xu, X. Y., Gan, R. Y., Tang, G. Y., Corke, H., Mavumengwana, V., & Li, H. B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods (Basel, Switzerland), 2019, 8(7), 246. https://doi.org/10.3390/foods8070246 46. Bayan, L., Koulivand, P. H., & Gorji, A. Garlic: a review of potential therapeutic effects. Avicenna journal of phytomedicine, 2014,4(1), 1–14. 47. El-Saber Batiha, G., Magdy Beshbishy, A., G Wasef, L., Elewa, Y. H. A., A Al-Sagan, A., Abd El-Hack, M. E., Taha, A. E., M Abd-Elhakim, Y., & Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients, 2020,12(3), 872. https://doi.org/10.3390/nu12030872 48. Iciek, M., Kwiecień, I., Chwatko, G., Sokołowska-Jeżewicz, M., Kowalczyk-Pachel, D., & Rokita, H. (2012). The effects of garlic-derived sulfur compounds on cell proliferation, caspase 3 activity, thiol levels and anaerobic sulfur metabolism in human hepatoblastoma HepG2 cells. Cell biochemistry and function, 30(3), 198–204. https://doi.org/10.1002/cbf.1835 49. Diantini, A., Subarnas, A., Lestari, K., Halimah, E., Susilawati, Y., Supriyatna, Julaeha, E., Achmad, T. H., Suradji, E. W., Yamazaki, C., Kobayashi, K., Koyama, H., & Abdulah, R. (2012). Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncology letters, 3(5), 1069–1072. https://doi.org/10.3892/ol.2012.596 50. Tsiklauri, L., An, G., Ruszaj, D. M., Alaniya, M., Kemertelidze, E., & Morris, M. E. (2011). Simultaneous determination of the flavonoids robinin and kaempferol in human breast cancer cells by liquid chromatography-tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis, 55(1), 109–113. https://doi.org/10.1016/j.jpba.2010.12.021 51. Yi, X., Zuo, J., Tan, C., Xian, S., Luo, C., Chen, S., Yu, L., & Luo, Y. (2016). Kaempferol, A Flavonoid Compound From Gynura Medica Induced Apoptosis And Growth Inhibition In Mcf-7 Breast Cancer Cell. African journal of traditional, complementary, and alternative medicines : AJTCAM, 13(4), 210–215. https://doi.org/10.21010/ajtcam.v13i4.27 52. Roy, N., Davis, S., Narayanankutty, A., Nazeem, P. A., Babu, T. D., Abida, P. S., … & Raghavamenon, A. (2016). Garlic phytocompounds possess anticancer activity by specifically targeting breast cancer biomarkers-an in silico study. Asian Pacific Journal of Cancer Prevention, 17(6), 2883-2888. 53. Odubela OO, Omirin ES, Olanrewaju AJ, Olugbogi EA, Aribisala PO, Nwachukwu KC, Okoh EF, Blessed SN, Boboye SO. Identification of Antagonists of Pro-Survival Bcl-2 from Morus alba in Human Malignancies: An In Silico Approach. Scicom Journal of Medical and Applied Medical Sciences. 2024 Oct 25;3(1):36-44. 54. Pan, Y., Zheng, Y. M., & Ho, W. S. (2018). Effect of quercetin glucosides from Allium extracts on HepG2, PC-3 and HT-29 cancer cell lines. Oncology letters, 15(4), 4657–4661. https://doi.org/10.3892/ol.2018.7893 55. Ward, A. B., Mir, H., Kapur, N., Gales, D. N., Carriere, P. P., & Singh, S. (2018). Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World Journal of Surgical Oncology, 16(1). doi:10.1186/s12957-018-1400-z 56. Nam, J.-S., Sharma, A., Nguyen, L., Chakraborty, C., Sharma, G., & Lee, S.-S. (2016). Application of bioactive quercetin in oncotherapy: From nutrition to nanomedicine. Molecules (Basel, Switzerland), 21(1), 108. doi:10.3390/molecules21010108 57. Liu, S., Matsuo, T., Miyaji, M., & Hosoya, O. (2018). Key pathways and genes influenced by a drug, NK-4, in human neurons. Investigative Ophthalmology & Visual Science, 59(9), 6051-6051. 58. Khan, I., Bahuguna, A., Kumar, P., Bajpai, V. K., & Kang, S. C. (2018). In vitro and in vivo antitumor potential of carvacrol nanoemulsion against human lung adenocarcinoma A549 cells via mitochondrial mediated apoptosis. Scientific Reports, 8(1). doi:10.1038/s41598-017-18644-9 59. Imran, M., Aslam, M., Alsagaby, S. A., Saeed, F., Ahmad, I., Afzaal, M., Arshad, M. U., Abdelgawad, M. A., El-Ghorab, A. H., Khames, A., Shariati, M. A., Ahmad, A., Hussain, M., Imran, A., & Islam, S. (2022). Therapeutic application of carvacrol: A comprehensive review. Food science & nutrition, 10(11), 3544–3561. https://doi.org/10.1002/fsn3.2994 60. Fatima, K., Luqman, S., & Meena, A. (2022). Carvacrol Arrests the Proliferation of Hypopharyngeal Carcinoma Cells by Suppressing Ornithine Decarboxylase and Hyaluronidase Activities. Frontiers in nutrition, 9, 857256. https://doi.org/10.3389/fnut.2022.857256 61. Herrera-Calderon, O., Yepes-Pérez, A. F., Quintero-Saumeth, J., Rojas-Armas, J. P., Palomino-Pacheco, M., Ortiz-Sánchez, J. M., … Andía-Ayme, V. (2020). Carvacrol: An in silico approach of a candidate drug on HER2, PI3Kα, mTOR, hER-α, PR, and EGFR receptors in the breast cancer. Evidence-Based Complementary and Alternative Medicine: eCAM, 2020, 1–12. doi:10.1155/2020/8830665 62. Zari, A. T., Zari, T. A., & Hakeem, K. R. (2021). Anticancer Properties of Eugenol: A Review. Molecules (Basel, Switzerland), 26(23), 7407. https://doi.org/10.3390/molecules26237407 63. Yoo, C.-B., Han, K.-T., Cho, K.-S., Ha, J., Park, H.-J., Nam, J.-H., … Lee, K.-T. (2005). Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Letters, 225(1), 41–52. doi:10.1016/j.canlet.2004.11.018 64. Nazreen, S., Elbehairi, S. E. I., Malebari, A. M., Alghamdi, N., Alshehri, R. F., Shati, A. A., Ali, N. M., Alfaifi, M. Y., Elhenawy, A. A., & Alam, M. M. (2023). New Natural Eugenol Derivatives as Antiproliferative Agents: Synthesis, Biological Evaluation, and Computational Studies. ACS omega, 8(21), 18811–18822. https://doi.org/10.1021/acsomega.3c00933.


Regular Issue Subscription Original Research
Volume 13
Issue 02
Received 17/09/2024
Accepted 27/10/2024
Published 04/11/2024