This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Charith R,
- Student, Msc (Agri) in Bioinformatics, University of Agricultural Sciences, GKVK Bengaluru, Karnataka,
Abstract document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_110723’);});Edit Abstract & Keyword
Objectives: This study aimed to evaluate the inhibitory potential of phytocompounds of Melissa officinalis against the MPXV poxin protein target, a key virulence factor in monkeypox infection. Methods: Molecular docking performed using PyRx a virtual screening software were conducted to predict the binding affinities of the compounds to MPXV poxin. Prior to docking, the compounds were subjected to comprehensive analysis, including Lipinski’s rule of five, evaluation of physicochemical properties, pharmacological analysis using SwissADME, and toxicity analysis using pkCSM. Results: The results highlighted that Caryophyllenol II as the most promising inhibitor, with a binding affinity of -6.7 kcal/mol, suggesting a strong interaction with the target protein. Geranic acid also exhibited notable binding affinity but to a lesser extent. Conclusion: Caryophyllenol II emerged as a lead compound for further development as an antiviral agent against monkeypox due to its better binding affinity to MPXV poxin. These findings show the potential of natural phytocompounds as therapeutic agents against viral infections and contribute to the ongoing efforts in antiviral drug discovery.
Keywords: MPXV poxin, Ramachandran Plot, Molecular Docking, Phytocompound, ADMET analysis, Ligand interaction.
[This article belongs to Research & Reviews : Journal of Computational Biology (rrjocb)]
Charith R. In-silico Molecular Docking Studies of Phytocompounds from Melissa officinalis Against MPXV Poxin Target. Research & Reviews : Journal of Computational Biology. 2024; 13(02):-.
Charith R. In-silico Molecular Docking Studies of Phytocompounds from Melissa officinalis Against MPXV Poxin Target. Research & Reviews : Journal of Computational Biology. 2024; 13(02):-. Available from: https://journals.stmjournals.com/rrjocb/article=2024/view=0
References
document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_110723’);});Edit
1. Sallam M, Eid H, Awamleh N, Al-Tammemi AA, Barakat M, Athamneh RY, et al. Conspiratorial attitude of the general public in Jordan towards emerging virus infections: a cross-sectional study amid the 2022 Monkeypox outbreak. Trop Med Infect Dis 2022;7(12):411. 2. von Magnus P, Andersen EK, Petersen KB, Birch-Andersen A. A pox-like disease in cynomolgus monkeys. Acta Pathol Microbiol Scand 1959; 46: 156–76. 3. Nguyen P-Y, Ajisegiri WS, Costantino V, Chughtai AA, MacIntyre CR. Reemergence of human monkeypox and declining population immunity in the context of urbanization, Nigeria, 2017–2020. Emerg Infect Dis 2021; 27: 1007. 4. Karagoz A, Tombuloglu H, Alsaeed M, Tombuloglu G, AlRubaish AA, Mahmoud A, Smajlović S, Ćordić S, Rabaan AA, Alsuhaimi E. Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. J Infect Public Health. 2023 Apr;16(4):531-541. doi: 10.1016/j.jiph.2023.02.003 5. World. WHO recommends new name for monkeypox disease [Internet]. Who.int. World Health Organization: WHO; 2022 .Available from: https://www.who.int/news/item/28-11-2022-who-recommends-new-name-for-monkeypox-disease 6. Moss B. Poxvirus cell entry: how many proteins does it take?. Viruses. 2012 Apr 27;4(5):688-707. 7. McInnes CJ, Damon IK, Smith GL, McFadden G, Isaacs SN, Roper RL, Evans DH, Damaso CR, Carulei O, Wise LM, Lefkowitz EJ. ICTV Virus Taxonomy Profile: Poxviridae 2023. Journal of General Virology. 2023 May 17;104(5):001849. 8. Stanford MM, McFadden G, Karupiah G, Chaudhri G: Immunopathogenesis of poxvirus infections:forecasting the impending storm. Immunol Cell Biol. 2007, 85:93-102. 10.1038/sj.icb.7100033 9. Okyay RA, Bayrak E, Kaya E, et al.: Another epidemic in the shadow of Covid 19 pandemic: a review of monkeypox. EJMO. 2022, 6:95-9. 10.14744/ejmo.2022.2022 10. Petersen E, Kantele A, Koopmans M, Asogun D, Yinka-Ogunleye A, Ihekweazu C, Zumla A: Human monkeypox: epidemiologic and clinical characteristics, diagnosis, and prevention. Infect Dis Clin North Am. 2019, 33:1027-43. 10.1016/j.idc.2019.03.001 11. Kang Y, Yu Y, Xu S. Human monkeypox infection threat: A comprehensive overview. PLOS Neglected Tropical Diseases. 2023 Apr 20;17(4):e0011246. 12. Huang Y, Mu L, and Wang W. Monkeypox: epidemiology, pathogenesis, treatment and prevention.Signal Transduct Target Ther 2022; 7(1): 373 13. Rizk JG, Lippi G, Henry BM, Forthal DN, Rizk Y. Prevention and treatment of monkeypox. Drugs. 2022 Jun;82(9):957-63. 14. Turner M, Mandia J, Keltner C, Haynes R, Faestel P, Mease L. Monkeypox in patient immunized with ACAM2000 smallpox vaccine during 2022 outbreak. Emerging Infectious Diseases. 2022 Nov;28(11):2336. 15. Astani A, Heidary Navid M, Schnitzler P. Attachment and penetration of acyclovir‐resistant herpes simplex virus are inhibited by Melissa officinalis extract. Phytotherapy Research. 2014 Oct;28(10):1547-52. 16. Lee JY, Abundo ME, Lee CW. Herbal medicines with antiviral activity against the influenza virus, a systematic review. The American journal of Chinese medicine. 2018 Dec 18;46(08):1663-700. 17. Miraj S, Rafieian-Kopaei, Kiani S. Melissa officinalis L: A Review study with an antioxidant prospective. Journal of evidence-based complementary & alternative medicine. 2017 Jul;22(3):385-94. 18. Vanti G, Ntallis SG, Panagiotidis CA, Dourdouni V, Patsoura C, Bergonzi MC, Lazari D, Bilia AR. Glycerosome of Melissa officinalis L. essential oil for effective anti-HSV Type 1. Molecules. 2020 Jul 8;25(14):3111. 19. Williams A, Scally G, Langland J. A topical botanical therapy for the treatment of canine papilloma virus associated oral warts: a case series. Advances in Integrative Medicine. 2021 May 1;8(2):151-4. 20. Astani A, Reichling J, Schnitzler P. Melissa officinalis extract inhibits attachment of herpes simplex virus in vitro. Chemotherapy. 2012 Mar 1;58(1):70-7. 21. Behzadi A, Imani S, Deravi N, Mohammad Taheri Z, Mohammadian F, Moraveji Z, Shavysi S, Mostafaloo M, Soleimani Hadidi F, Nanbakhsh S, Olangian-Tehrani S, Marabi MH, Behshood P, Poudineh M, Kheirandish A, Keylani K, Behfarnia P. Antiviral Potential of Melissa officinalis L.: A Literature Review. Nutr Metab Insights. 2023 Jan 12;16:11786388221146683. doi: 10.1177/11786388221146683. 22. Petrisor G, Motelica L, Craciun LN, Oprea OC, Ficai D, Ficai A. Melissa officinalis: Composition, pharmacological effects and derived release systems—A review. International Journal of Molecular Sciences. 2022 Mar 25;23(7):3591. 23. Ahire SM, Jadhav SP, Shewale VV, Pawar PS, Kokande AM, Sonawane DP, Patil DM. A Review On Computer-Aided Drug Design And Discovery. Journal for ReAttach Therapy and Developmental Diversities. 2023 Sep 16;6(10s (2)):1573-82. 24. Duchoslav V, Boura E. Structure of monkeypox virus poxin: implications for drug design. Archives of Virology. 2023 Jul;168(7):192. 25. Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. DOI: 10.1007/s10822-013-9644-8 26. Fioramonte M, dos Santos AM, McIIwain S, Noble WS, Franchini KG, Gozzo FC. Analysis of secondary structure in proteins by chemical cross‐linking coupled to MS. Proteomics. 2012 Aug;12(17):2746-52. 27. Hollingsworth SA, Karplus PA. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol Concepts. 2010 Oct;1(3-4):271-283. doi: 10.1515/BMC.2010.022. PMID: 21436958; PMCID: PMC3061398. 28. Chen X, Li H, Tian L, Li Q, Luo J, Zhang Y. Analysis of the physicochemical properties of acaricides based on Lipinski’s rule of five. Journal of computational biology. 2020 Sep 1;27(9):1397-406. 29. Kondapuram SK, Sarvagalla S, Coumar MS. Docking-based virtual screening using PyRx Tool: autophagy target Vps34 as a case study. InMolecular Docking for Computer-Aided Drug Design 2021 Jan 1 (pp. 463-477). Academic Press. 30. Sapjaroen P, Tangyuenyongwatana P. Study of steric factor on blind docking of phenylbutanoid dimers with PyRx 0.8 virtual screening tool. InThe 35th International Annual Meeting in Pharmaceutical Sciences & CU-MPU International Collaborative Research Conference Study 2019 (pp. 155-158). 31. Maurya VK, Kumar S, Singh M, Saxena V. Molecular docking and dynamic studies of novel phytoconstituents in an investigation of the potential inhibition of protein kinase C-beta II in diabetic neuropathy. Journal of Molecular Chemistry. 2023 Aug 16;3(2):589-. 32. Lee J, Beers JL, Geffert RM, Jackson KD. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules. 2024 Jan 12;14(1):99. 33. Bhatt S, Dhiman S, Kumar V, Gour A, Manhas D, Sharma K, Ojha PK, Nandi U. Assessment of the CYP1A2 inhibition-mediated drug interaction potential for pinocembrin using in silico, in vitro, and in vivo approaches. ACS omega. 2022 Jun 2;7(23):20321-31. 34. Kanacher, T., Lindauer, A., Mezzalana, E., Michon, I., Veau, C., Mantilla, J.D.G., Nock, V. and Fleury, A., 2020. A physiologically-based pharmacokinetic (PBPK) model network for the prediction of CYP1A2 and CYP2C19 drug–drug–gene interactions with fluvoxamine, omeprazole, s-mephenytoin, moclobemide, tizanidine, mexiletine, ethinylestradiol, and caffeine. Pharmaceutics, 12(12), p.1191.
function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}
