Nanotechnology: Recent Advances, Opportunities and Challenges

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2024 | Volume :26 | Issue : 02 | Page : –
By
vector

Moumita Barman,

vector

Shubham Gautam,

vector

Monika Singh,

vector

Neha Tyagi,

  1. Research Scholar, I.T.S College of Pharmacy, Ghaziabad, Uttar pradesh, India
  2. Associate Professor, I.T.S College of Pharmacy, Ghaziabad, Uttar pradesh, India
  3. Assistant Professor, I.T.S College of Pharmacy, Ghaziabad, Uttar pradesh, India
  4. Research Scholar, I.T.S College of Pharmacy, Ghaziabad, Uttar pradesh, India

Abstract document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_108688’);});Edit Abstract & Keyword

Nanotechnology, the science of the minuscule, has catalysed a revolution across diverse fields, from pharmacy to veterinary science. This abstract encapsulates the dynamic interplay between nanotechnology and healthcare, unveiling its transformative impact on drug delivery, cosmeceuticals, veterinary medicine, dentistry, and biotechnology. In pharmacy, nanotechnology pioneers targeted drug delivery systems, amplifying therapeutic efficacy while mitigating adverse effects. Nano-cosmeceuticals redefine beauty standards, infusing skincare, haircare, lip care, and nail care products with unparalleled penetration and stability. Veterinary science embraces nanotechnology’s potential, enhancing diagnosis, treatment delivery, and disease control in animals. Concurrently, dentistry explores nanomaterials’ potential, revolutionizing oral health treatments with improved qualities and novel applications. At the nexus of biology and nanotechnology, nanobiotechnology unveils a new frontier, offering transformative tools for studying biological phenomena and designing innovative therapies. This abstract serves as a portal into the dynamic landscape of nanotechnology in healthcare, where innovation converges with the infinitesimal to redefine the boundaries of possibility.

Keywords: Nanotechnology, Targeted drug delivery, adverse effects, Solid lipid nanoparticles, Drug loading capacity

[This article belongs to Nano Trends – A Journal of Nano Technology & Its Applications (nts)]

How to cite this article:
Moumita Barman, Shubham Gautam, Monika Singh, Neha Tyagi. Nanotechnology: Recent Advances, Opportunities and Challenges. Nano Trends – A Journal of Nano Technology & Its Applications. 2024; 26(02):-.
How to cite this URL:
Moumita Barman, Shubham Gautam, Monika Singh, Neha Tyagi. Nanotechnology: Recent Advances, Opportunities and Challenges. Nano Trends – A Journal of Nano Technology & Its Applications. 2024; 26(02):-. Available from: https://journals.stmjournals.com/nts/article=2024/view=0

Full Text PDF

References
document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_108688’);});Edit

  1. Pison U, Welte T, Giersing M, Groneberg DA: Nanomedicine for respiratory diseases. Eu J Pharmacology2006, 533: 341–350. 10.1016/j.ejphar.2005.12.068

 

  1. Brannon-Peppase L, Blanchette JQ: Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev2004, 56(11):1649–1659. 10.1016/j.addr.2004.02.014
  2. Stylios GK, Giannoudis PV, Wan T: Applications of nanotechnologies in medical practice. Injury2005, 36: S6-S13. 10.1016/j.injury.2005.10.011
  3. Yokoyama M: Drug targeting with nano-sized carrier systems. J Artif Organs2005, 8(2):77–84. 10.1007/s10047-005-0285-0

 

  1. Schatzlein AG: Delivering cancer stem cell therapies – a role for nanomedicines? Eur J Cancer2006, 42(9):1309–1315. 10.1016/j.ejca.2006.01.044

   

  1. AjazuddinSSApplications of novel drug delivery system for herbal formulationsFitoterapia201081768068920471457

 

  1. MainardesRMUrbanMCCCintoPOChaudMVEvangelistaRCGremiãoMPDLiposomes and micro/nanoparticles as colloidal carriers for nasal drug deliveryCurr Drug Deliv20063327528516848729

 

  1. MainardesRMUrbanMCCCintoPOChaudMVEvangelistaRCGremiãoMPDLiposomes and micro/nanoparticles as colloidal carriers for nasal drug deliveryCurr Drug Deliv20063327528516848729

 

  1. GrillAEJohnstonNWSadhukhaTPanyamJA review of select recent patents on novel nanocarriersRecent Pat Drug Deliv Formul20093213714219519573

 

  1. VenugopalJPrabhakaranMPLowSContinuous nanostructures for the controlled release of drugsCurr Pharm Des200915151799180819442191

 

  1. ChorilliMBrizanteACRodriguesCASalgadoHRNAspectos gerais em sistemas transdérmicos de liberação de fármacos [General features of transdermal drug delivery]Infarma2007881713 Portuguese

 

  1. Nilesh J, Ruchi J, Navneet T, Brham Prakash G, Deepak kumar J. Nanotechnology: A Safe And Effective Drug Delivery Systems. Asian Journal of Pharmaceutical and Clinical Research 2010, vol.3, issue 3. 159-165

 

  1. Rakesh P.P. Nanoparticles and its Applications in Field of Pharmacy. Available at http://www. Pharmainfo.net/reviews/ Nanoparticles-and-its-applications-field-phamacy.2008.56

 

  1. https://th.bing.com/th/id/OIP.Cv4xoDreXWdXRfYGtIyrHAHaEm?rs=1&pid=ImgDetMain

 

  1. Mroz, P.; Hashmi, J.T.; Huang, Y.-Y.; Lange, N.; Hamblin, M.R. Stimulation of anti-tumor immunity by photodynamic therapy. Expert Rev. Clin. Immunol. 2011, 7, 75–91. [CrossRef] [PubMed]

 

  1. Lim, M.E.; Lee, Y.-L.; Zhang, Y.; Chu, J.J.H. Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials 2012, 33, 1912–1920. [CrossRef] [PubMed]

 

  1. Kharkwal, G.B.; Sharma, S.K.; Huang, Y.-Y.; Dai, T.; Hamblin, M.R. Photodynamic therapy for infections: Clinical applications. Lasers Surg. Med. 2011, 43, 755–767. [CrossRef] [PubMed]

 

  1. Ribeiro, M.S.; da Silva, D.d.F.T.; Cristina Nunez, S.; Zezell, M.D. Laser em baixa intensidade. In Técnicas e Procedimentos Terapêuticos; Quintessense Editora: São Paulo, SP, Brazil, 2004; pp. 945–953.

 

  1. Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [CrossRef] [PubMed]

 

  1. Machado, A.E.d.H. Terapia fotodinâmica: Princípios, potencial de aplicação e perspectivas. Quim. Nova 2000, 23, 237–243. [CrossRef]

 

  1. https://www.sciencerepository.org/resources/uploads/2020/photodynamic-therapy-a-promising-modality-for-the-treatment-of-cancer_2.jpg

 

  1. Macdonald, I.J.; Dougherty, T.J. Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanines 2001, 5, 105–129. [CrossRef]

 

  1. Allison, R.R.; Moghissi, K. Photodynamic therapy (pdt): Pdt mechanisms. Clin. Endosc. 2013, 46, 24–29. [CrossRef] [PubMed]

 

  1. Kharkwal, G.B.; Sharma, S.K.; Huang, Y.-Y.; Dai, T.; Hamblin, M.R. Photodynamic therapy for infections: Clinical applications. Lasers Surg. Med. 2011, 43, 755–767. [CrossRef] [PubMed]

 

  1. Ribeiro, M.S.; da Silva, D.d.F.T.; Cristina Nunez, S.; Zezell, M.D. Laser em baixa intensidade. In Técnicas e Procedimentos Terapêuticos; Quintessense Editora: São Paulo, SP, Brazil, 2004; pp. 945–953

 

  1. Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [CrossRef] [PubMed]

 

  1. Shah, P.M.; Gerdes, H. Endoscopic options for early stage esophageal cancer. J. Gastrointest. Oncol. 2014, 6, 20–30.

 

  1. Nanashima, A.; Nagayasu, T. Current status of photodynamic therapy in digestive tract carcinoma in Japan. Int. J. Mol. Sci. 2015, 16, 3434–3440. [CrossRef] [PubMed]

 

  1. Yano, T.; Muto, M.; Yoshimura, K.; Niimi, M.; Ezoe, Y.; Yoda, Y.; Yamamoto, Y.; Nishisaki, H.; Higashino, K.; Iishi, H. Phase i study of photodynamic therapy using talaporfin sodium and diode laser for local failure after chemoradiotherapy for esophageal cancer. Radiat. Oncol. 2012, 7. [CrossRef] [PubMed]

 

  1. Yano, T.; Muto, M.; Minashi, K.; Iwasaki, J.; Kojima, T.; Fuse, N.; Doi, T.; Kaneko, K.; Ohtsu, A. Photodynamic therapy as salvage treatment for local failure after chemoradiotherapy in patients with esophageal squamous cell carcinoma: A phase ii study. Int. J. Cancer 2012, 131, 1228–1234. [CrossRef] [PubMed]

 

  1. Green, B.; Cobb, A.R.M.; Hopper, C. Photodynamic therapy in the management of lesions of the head and neck. Br. J. Oral Maxillofac. Surg. 2013, 51, 283–287. [CrossRef] [PubMed]

 

  1. Simone, C.B., II; Cengel, K.A. Photodynamic therapy for lung cancer and malignant pleural mesothelioma. Semin. Oncol. 2014, 41, 820–830. [CrossRef] [PubMed]

 

  1. Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [CrossRef] [PubMed]

 

  1. Allison, R.R.; Moghissi, K. Oncologic photodynamic therapy: Clinical strategies that modulate mechanisms of action. Photodiagn. Photodyn. Ther. 2013, 10, 331–341. [CrossRef] [PubMed]

 

  1. Yoon, I.; Li, J.Z.; Shim, Y.K. Advance in photosensitizers and light delivery for photodynamic therapy. Clin. Endosc. 2013, 46, 7–23. [CrossRef] [PubMed]

 

  1. Szaciłowski, K.; Macyk, W.; Drzewiecka-Matuszek, A.; Brindell, M.; Stochel, G. Bioinorganic photochemistry: Frontiers and mechanisms. Chem. Rev. 2005, 105, 2647–2694. [CrossRef] [PubMed]

 

  1. Baran, T.M.; Foster, T.H. Comparison of flat cleaved and cylindrical diffusing fibers as treatment sources for interstitial photodynamic therapy. Med. Phys. 2014, 41. [CrossRef] [PubMed]

 

  1. Jockusch, S.; Lee, D.; Turro, N.J.; Leonard, E.F. Photo-induced inactivation of viruses: Adsorption of methylene blue, thionine, and thiopyronine on qbeta bacteriophage. Proc. Natl. Acad. Sci. USA 1996, 93, 7446–7451. [CrossRef] [PubMed]

 

  1. Phoenix, D.A.; Harris, F. Phenothiazinium-based photosensitizers: Antibacterials of the future? Trends Mol. Med. 2003, 9, 283–285. [CrossRef]

 

  1. Harris, F.; Chatfield, L.K.; Phoenix, D.A. Phenothiazinium based photosensitisers—Photodynamic agents with a multiplicity of cellular targets and clinical applications. Curr. Drug Targets 2005, 6, 615–627. [CrossRef] [PubMed]

 

  1. Tuite, E.M.; Kelly, J.M. New trends in photobiology. J. Photochem. Photobiol. B 1993, 21, 103–124. [CrossRef]

 

  1. Millson, C.E.; Wilson, M.; Macrobert, A.J.; Bedwell, J.; Bown, S.G. The killing of helicobacter pylori by low-power laser light in the presence of a photosensitiser. J. Med. Microbiol. 1996, 44, 245–252. [CrossRef] [PubMed]

 

  1. Tardivo, J.P.; del Giglio, A.; de Oliveira, C.S.; Gabrielli, D.S.; Junqueira, H.C.; Tada, D.B.; Severino, D.; de Fátima Turchiello, R.; Baptista, M.S. Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. Photodiagn. Photodyn. Ther. 2005, 2, 175–191. [CrossRef]

 

  1. Wagner, M.; Suarez, E.R.; Theodoro, T.R.; Machado Filho, C.D.A.S.; Gama, M.F.M.; Tardivo, J.P.; Paschoal, F.M.; Pinhal, M.A.S. Methylene blue photodynamic therapy in malignant melanoma decreases expression of proliferating cell nuclear antigen and heparanases. Clin. Exp. Dermatol. 2012, 37, 527–533. [CrossRef] [PubMed]

 

  1. Kessel, D.; Thompson, P. Purification and analysis of hematoporphyrin and hematoporphyrin derivative by gel exclusion and reverse-phase chromatography. Photochem. Photobiol. 1987, 46, 1023–1025. [CrossRef] [PubMed]

 

  1. Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Aggarwal, B.B., Surh, Y.-J., Shishodia, S., Eds.; Springer: Boston, MA, USA, 2007; pp. 1–75

 

  1. Lee, W.-H.; Loo, C.-Y.; Bebawy, M.; Luk, F.; Mason, R.S.; Rohanizadeh, R. Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol. 2013, 11, 338–378. [CrossRef] [PubMed]

 

  1. Haukvik, T.; Bruzell, E.; Kristensen, S.; Tønnesen, H.H. Photokilling of bacteria by curcumin in selected polyethylene glycol 400 (peg 400) preparations. Studies on curcumin and curcuminoids, xli. Pharmazie 2010, 65, 600–606. [PubMed]

 

  1. LoTempio, M.M.; Veena, M.S.; Steele, H.L.; Ramamurthy, B.; Ramalingam, T.S.; Cohen, A.N.; Chakrabarti, R.; Srivatsan, E.S.; Wang, M.B. Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin. Cancer Res. 2005, 11, 6994–7002. [CrossRef] [PubMed]

 

  1. Allen, C.M.; Sharman, W.M.; van Lier, J.E. Current status of phthalocyanines in the photodynamic therapy of cancer. J. Porphyr. Phthalocyanines 2001, 5, 161–169. [CrossRef]

 

  1. Ranyuk, E.; Cauchon, N.; Klarskov, K.; Guérin, B.; van Lier, J.E. Phthalocyanine-peptide conjugates: Receptor-targeting bifunctional agents for imaging and photodynamic therapy. J. Med. Chem. 2013, 56, 1520–1534. [CrossRef] [PubMed]

 

  1. Zasedatelev, A.V.; Dubinina, T.V.; Krichevsky, D.M.; Krasovskii, V.I.; Gak, V.Y.; Pushkarev, V.E.; Tomilova, L.G.; Chistyakov, A.A. Plasmon-induced light absorption of phthalocyanine layer in hybrid nanoparticles: Enhancement factor and effective spectra. J. Phys. Chem. C 2016, 120, 1816–1823. [CrossRef]

 

  1. Kleemann, B.; Loos, B.; Scriba, T.J.; Lang, D.; Davids, L.M. St John’s wort (hypericum perforatum l.) photomedicine: Hypericin-photodynamic therapy induces metastatic melanoma cell death. PLoS ONE 2014, 9, e103762. [CrossRef] [PubMed]

 

  1. Maduray, K.; Davids, L. The anticancer activity of hypericin in photodynamic therapy. J. Bioanal. Biomed. 2012, 2012. [CrossRef]

 

  1. Kubin, A.; Wierrani, F.; Burner, U.; Alth, G.; Grunberger, W. Hypericin—The facts about a controversial agent. Curr. Pharm. Des. 2005, 11, 233–253. [CrossRef] [PubMed]

 

  1. Muehlmann, L.A.; Ma, B.C.; Longo, J.P.F.; Almeida Santos, M.d.F.M.; Azevedo, R.B. Aluminum-phthalocyanine chloride associated to poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as a new third-generation photosensitizer for anticancer photodynamic therapy. Int. J. Nanomed. 2014, 9, 1199–1213. [CrossRef] [PubMed]

 

  1. Konan, Y.N.; Gurny, R.; Allémann, E. State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B 2002, 66, 89–106. [CrossRef]

 

  1. Roozeboom, M.H.; Aardoom, M.A.; Nelemans, P.J.; Thissen, M.R.T.M.; Kelleners-Smeets, N.W.J.; Kuijpers, D.I.M.; Mosterd, K. Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: A randomized controlled trial with at least 5-year follow-up. J. Am. Acad. Dermatol. 2013, 69, 280–287. [CrossRef] [PubMed]

 

  1. Mukta and F. Adam, “Cosmeceuticals in day-to-day clinical practice,” Journal of Drugs in Dermatology, vol. 9, pp. 62–69, 2010.

 

  1. https://www.researchgate.net/figure/Photosensitizers-currently-in-various-stages-of-clinical-trials-for-photo-based_tbl3_235885483

 

  1. https://www.semanticscholar.org/paper/Enhanced-Intracellular-Photosensitizer-Uptake-and-Chizenga-Abrahamse/845b0f4773f516d29b00ba858da1ac523acadb32/figure/3

 

  1. Srinivas, “Te current role of nanomaterials in cosmetics,” Journal of Chemical and Pharmaceutical Research, vol. 8, no. 5, pp. 906–914, 2016.

 

  1. S. Brandt, A. Cazzaniga, and M. Hann, “Cosmeceuticals: current trends and market analysis,” Seminars in Cutaneous Medicine and Surgery, vol. 30, no. 3, pp. 141–143, 2011.

 

  1. Mu and R. L. Sprando, “Application of nanotechnology in cosmetics,” Pharmaceutical Research, vol. 27, no. 8, pp. 1746– 1749, 2010.

 

  1. J. Nohynek, J. Lademann, C. Ribaud, and M. S. Roberts, “Grey Goo on the skin? Nanotechnology, cosmetic and sunscreen safety,” Critical Reviews in Toxicology, vol. 37, no. 3, pp. 251–277, 2007.

 

  1. https://www.researchgate.net/profile/Monica-Alves/publication/331437049/figure/fig3/AS:1151992986648588@1651667939603/Schematic-representation-of-different-types-of-nanocarriers-used-in-drug-delivery.png

 

  1. https://www.researchgate.net/publication/324064740/figure/fig12/AS:1086433397866496@1636037315132/Major-classes-in-nanocosmeceuticals.jpg

 

  1. Lohani, A. Verma, H. Joshi, N. Yadav, and N. Karki, “Nanotechnology-based cosmeceuticals,” ISRN Dermatology, vol. 2014, Article ID 843687, 14 pages, 2014.

 

  1. G. Smijs and S. Pavel, “Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and efectiveness,” Nanotechnology, Science and Applications, vol. 4, no. 1, pp. 95–112, 2011.

 

  1. A. Glaser, “Anti-aging products and cosmeceuticals,” Facial Plastic Surgery Clinics of North America, vol. 12, no. 3, pp. 363– 372, 2004.

 

  1. Rosen, A. Landriscina, and A. Friedman, “NanotechnologyBased Cosmetics for Hair Care,” Cosmetics, vol. 2, no. 4, pp. 211– 224, 2015.

 

  1. Hu, M. Liao, Y. Chen et al., “A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone,” International Journal of Nanomedicine, vol. 7, pp. 5719–5724, 2012.

 

  1. Tripura and H. Anushree, “Anushree novel delivery systems: current trend in cosmetic industry,” European Journal of Pharmaceutical and Medical Research, vol. 4, no. 8, pp. 617–627, 201

 

  1. https://www.dermacare-direct.co.uk/sesderma-fillderma-lip.html

 

  1. Bethany, “Zapping nanoparticles into nail polish,” Laser Ablation Method Makes Cosmetic and Biomedical Coatings in a Flash, vol. 95, no. 12, p. 9, 2017

 

  1. Pereira, N. Dias, J. Carvalho, S. Fernandes, C. Santos, and N. Lima, “Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum,” Journal of Applied Microbiology, vol. 117, no. 6, pp. 1601–1613, 2014.

 

  1. https://www.researchgate.net/figure/Various-Marketed-Formulations-of-Liposomes_tbl1_282693545

 

  1. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64: 1020-1037. Link: https://bit.ly/3aQ7cue

 

  1. Scott NR (2007) Nanoscience in veterinary medicine. Vet Res Commun 31: 139-144. Link: https://bit.ly/3dPtvSy

 

  1. Assadi P (2008) A novel multiplication algorithm in nanotechnology. J Appl Sci 8: 2625-2630. Link: https://bit.ly/3soc4wu

 

  1. Sahoo S, Ma W, Labhasetwar V (2004) Effi cacy of transferrin-conjugated paclitaxel loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112: 335-340. Link: https://bit.ly/3aQ8F3I

 

  1. Sekhon B, Saluja V, Sekhon BS (2011) Nanovaccines- An overview. Int J Pharm Frontier Res 1: 101-109. Link: https://bit.ly/3socjYq

 

  1. Gheibi Hayat SM, Darroudi M (2019) Nanovaccine: a novel approach in immunization. J Cell Physiol 234: 12530–12536. Link: https://bit.ly/2P8L7Ph

 

  1. Nordly P, Madsen H, Nielsen H, Foged C (2009) Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Expert Opin on Drug Deliv 6: 657-672. Link: https://bit.ly/2P71hZs

 

  1. Yang LAP (2000). Physiochemical aspects of drug delivery and release from polymer-based colloids. Current Opinion in Colloid and Interface Science, 51: 132-143.

 

  1. Underwood C, Van E (2012) Nanomedicine and veterinary science: The reality and the practicality. Vet J 193: 12-23. Link: https://bit.ly/2ZM35cw

 

  1. Verma O, Kumar R, Kumar A, Chand S (2012) Assisted reproductive techniques in farm animal: From artifi cial insemination to nanobiotechnology. Vet World 5: 301-310. Link: https://bit.ly/3khPPWc

 

  1. Monerris M, Arévalo F, Fernández H, Zon M, Molina P (2012) Integrated electrochemical immunosensor with gold nanoparticles for the determination of progesterone. Sens Actuators B Chem 166: 586-592. Link: https://bit.ly/3uqdqIZ

 

  1. Wang T, Zhao G, Liang X, Xu Y, Li Y, et al. (2014) Numerical simulation of the effect of superparamagnetic nanoparticles on microwave rewarming of cryopreserved tissues. Cryobiology 68: 234-243. Link: https://bit.ly/3aQIgD4

 

  1. Weibel M, Badano J, Rintoul I (2014) Technological evolution of hormone delivery systems for estrous synchronization in cattle. Int J Livest Res 4: 20- 40. Link: https://bit.ly/3bxp3Fv

 

  1. O’Connell MJ, Bachilo SM, Huffaman CB, Moore VC, Strano MS (2002) Band gap fl uorescence from individual single-walled carbon nanotubes. Sci 297: 593-596. Link: https://bit.ly/3aL7VNf

 

  1. in veterinary and animal science. Vet World 2: 475-477. Link: https://bit.ly/2OWO1Gz

 

  1. Eijkel TCJ, Berg DVA (2005) Nanofl uidics: what is it and what can we expect from it? Microfl uid. Nanofl uid 1: 249-267. Link: https://bit.ly/37GixuM

 

  1. Suh R, Phadke N, Ohl D, Takayama S, Smith G (2006) In vitro fertilization within microchannels requires lower total numbers and lower concentrations of spermatozoa. Hum Reprod 21: 477-483. Link: https://bit.ly/3kkaqcx

 

  1. Schuster T, Cho B, Keller L, Takayama S, Smith G (2003) Isolation of motile sperm from semen samples using microfl uidics. Reprod Biomed 7: 75-81. Link: https://bit.ly/3qON7tO

 

  1. Jain KK (2005) Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta 358: 37-54. Link: https://bit.ly/3aMxWM6

 

  1. Bentolila L, Ebenstein Y, Weiss S (2009) Quantum dots for in vivo small-animal imaging. J Nucl Med 50: 493-496. Link: https://bit.ly/3dGUAY9

 

  1. Shreya G, Christopher G, Feng C, Weibo C (2016) Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Adv Drug Deliv Rev 3: 20. Link: https://bit.ly/2NQoVIZ

 

  1. Cai W, Chen X (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3: 1840-1854. Link: https://bit.ly/3ussG8l

 

  1. Lucignani G, Bombardieri E (2004) Molecular imaging: Seeing the invisible beyond the “hot spot”. Q J Nucl Med Mol Imaging 48: 1–3. Link: https://bit.ly/3uvhGH4

 

  1. Galldiks N, Stoffels G, Ruge M, Rapp M, Sabel M, et al. (2013) Role of O-(2- 18F-fl uoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med 54: 2046–2054. Link: https://bit.ly/3uvw95V

 

  1. LeBlanc AK, Jakoby BW, Townsend DW, Daniel GB (2009) 18FDG-PET imaging in canine lymphoma and cutaneous mast cell tumor. Vet Radiol Ultrasound 50: 215-223. Link: http://bit.ly/37GVJv0

 

  1. https://www.mdpi.com/1420-3049/28/18/6624

 

  1. Schmalz, G.; Hickel, R.; Van Landuyt, K.L.; Reichl, F.-X. Scientific update on nanoparticles in dentistry. Int. Dent. J. 2018, 68, 299–305.

 

  1. Bhardwaj, A.; Bhardwaj, A.; Misuriya, A.; Maroli, S.; Manjula, S.; Singh, A.K. Nanotechnology in dentistry: Present and future. J. Int. Oral Health 2014, 6, 121–126.

 

  1. Mantri, S.S.; Mantri, S. The nano era in dentistry. J. Nat. Sci. Biol. Med. 2013, 4, 39–44

 

  1. Theodore Roberson, J.; Harald, O.H.; Edward, J.S. Sturdevant’s Art and Science of Operative Dentistry; Elsevier: Amsterdam, The Netherlands, 2006; pp. 807–840.

 

  1. Freitas, R.A. Nanodentistry. J. Am. Dent. Assoc. 2000, 131, 1559–1565.

 

  1. Kavoosi, F.; Modaresi, F.; Sanaei, M.; Rezaei, Z. Medical and dental applications of nanomedicines. APMIS 2018, 126, 795–803

 

  1. Bayne, S.C. Dental Biomaterials: Where Are We and Where Are We Going? J. Dent. Educ. 2005, 69, 571–585.

 

  1. Maxfield, B.J.; Hamdan, A.M.; Tüfekçi, E.; Shroff, B.; Best, A.M.; Lindauer, S.J. Development of white spot lesions during orthodontic treatment: Perceptions of patients, parents, orthodontists, and general dentists. Am. J. Orthod. Dentofac. Orthop. 2012, 141, 337–344.

 

  1. https://www.interdent.com/gentle-dental/resources/what-are-orthodontic-elastics-rubber-bands/

 

  1. Prabha, R.D.; Kandasamy, R.; Sivaraman, U.S.; Nandkumar, M.A.; Nair, P.D. Antibacterial nanosilver coated orthodontic bands with potential implications in dentistry. Indian J. Med. Res. 2016, 144, 580–586.

 

  1. Moreira, D.M.; Oei, J.; Rawls, H.R.; Wagner, J.; Chu, L.; Li, Y.; Zhang, W.; Whang, K. A novel antimicrobial orthodontic band cement with in situ–generated silver nanoparticles. Angle Orthod. 2015, 85, 175–183

 

  1. Costa, A.; Raffainl, M.; Melsen, B. Miniscrews as orthodontic anchorage: A preliminary report. Int. J. Adult Orthod. Orthognath. Surg. 1998, 13, 201–209.

 

  1. Reynders, R.; Ronchi, L.; Bipat, S. Mini-implants in orthodontics: A systematic review of the literature. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 564.e1–564.e19.

 

  1. Tsui, W.; Chua, H.; Cheung, L.K. Bone anchor systems for orthodontic application: A systematic review. Int. J. Oral Maxillofac. Surg. 2012, 41, 1427–1438.

 

  1. Leung, M.T.-C.; Lee, T.C.-K.; Rabie, A.B.M.; Wong, R.W.-K. Use of Miniscrews and Miniplates in Orthodontics. J. Oral Maxillofac. Surg. 2008, 66, 1461–1466

 

  1. Rapoport, L.P.; Bilik, Y.; Feldman, Y.A.; Homyonfer, M.; Cohen, S.R.; Tenne, R. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nat. Cell Biol. 1997, 387, 791–793

 

  1. Sawhney, R.; Sharma, R.; Sharma, K. Microbial Colonization on Elastomeric Ligatures during Orthodontic Therapeutics: An Overview. Turk. J. Orthod. 2018, 31, 21–25.

 

  1. Seres, L.; Kocsis, A. Closure of Severe Skeletal Anterior Open Bite With Zygomatic Anchorage. J. Craniofacial Surg. 2009, 20, 478–482.

 

  1. Sharan, J.; Singh, S.; Lale, S.; Mishra, M.; Koul, V.; Kharbanda, O.P. Applications of Nanomaterials in Dental Science: A Review. J. Nanosci. Nanotechnol. 2017, 17, 2235–2255.

 

  1. Maxfield, B.J.; Hamdan, A.M.; Tüfekçi, E.; Shroff, B.; Best, A.M.; Lindauer, S.J. Development of white spot lesions during orthodontic treatment: Perceptions of patients, parents, orthodontists, and general dentists. Am. J. Orthod. Dentofac. Orthop. 2012, 141, 337–344.

 

  1. https://www.jnjortho.com/product-page/orthodontic-mini-screw-demonstration-model

 

  1. Rossi, M.; Bruno, G.; De Stefani, A.; Perri, A.; Gracco, A. Quantitative CBCT evaluation of maxillary and mandibular cortical bone thickness and density variability for orthodontic miniplate placement. Int. Orthod. 2017, 15, 610–624.

 

  1. Gracco, A.; Lombardo, L.; Cozzani, M.; Siciliani, G. Quantitative cone-beam computed tomography evaluation of palatal bone thickness for orthodontic miniscrew placement. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 361–369.

 

  1. Gracco, A.; Lombardo, L.; Cozzani, M.; Siciliani, G. Quantitative cone-beam computed tomography evaluation of palatal bone thickness for orthodontic miniscrew placement. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 361–369.

 

  1. Gracco, A.; Lombardo, L.; Cozzani, M.; Siciliani, G. Quantitative evaluation with CBCT of palatal bone thickness in growing patients. Prog. Orthod. 2006, 7, 164–174.

 

  1. Jang, I.; Choi, D.-S.; Lee, J.-K.; Kim, W.-T.; Cha, B.-K.; Choi, W.-Y. Effect of drug-loaded TiO2 nanotube arrays on osseointegration in an orthodontic miniscrew: An in-vivo pilot study. Biomed. Microdevices 2017, 19, 94

 

  1. Jang, I.; Shim, S.-C.; Choi, D.-S.; Cha, B.-K.; Lee, J.-K.; Choe, B.-H.; Choi, W.-Y. Effect of TiO2 nanotubes arrays on osseointegration of orthodontic miniscrew. Biomed. Microdevices 2015, 17, 76.

 

  1. Bawa, R., Audette, G. F., & Rubinstein, I. (2016). Handbook of clinical nanomedicine: nanoparticles, imaging, therapy, and clinical applications. Pan Stanford.

 

  1. Bawa, R., Audette, G. F., & Rubinstein, I. (2016). Handbook of clinical nanomedicine: nanoparticles, imaging, therapy, and clinical applications. Pan Stanford.

 

  1. Hulla, J. E., Sahu, S. C., & Hayes, A. W. (2015). Nanotechnology: History and future. Human & experimental toxicology, 34(12), 1318- 1321.

 

  1. Jain, K. K. (2004). Applications of biochips: from diagnostics to personalized medicine. Current opinion in drug discovery & development, 7(3), 285-289.

 

  1. Jain, K. K. (2004). Applications of biochips: from diagnostics to personalized medicine. Current opinion in drug discovery & development, 7(3), 285-289.

 

  1. Brown, E. M. B. (2014). Nanomedicine Advancements in Cancer Diagnosis and Treatment. Horizons in Clinical Nanomedicine, 67.

 

  1. Freitas, R. A. (2005). Nanotechnology, nanomedicine and nanosurgery. International Journal of Surgery, 4(3), 243-246.

 

  1. Ebbesen, M., & Jensen, T. G. (2006). Nanomedicine: techniques, potentials, and ethical implications. BioMed Research International, 2006

 

  1. Fankhauser, F., Niederer, P. F., Kwasniewska, S., & van der Zypen, E. (2004). Supernormal vision, high-resolution retinal imaging, multiphoton imaging and nanosurgery of the cornea–a review. Technology and Health Care, 12(6), 443-453.

 

  1. Lamounier, J. A., Moulin, Z. S., & Xavier, C. C. (2004). Recommendations for breastfeeding during maternal infections. Jornal de pediatria, 80(5), s181-s188.

 


Regular Issue Subscription Review Article
Volume 26
Issue 02
Received 23/09/2024
Accepted 05/10/2024
Published 22/10/2024

function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}