Low density polyurethane based antistatic coating for PU flexible foam for launch vehicles

Year : 2025 | Volume : 12 | Issue : 02 | Page : 25 30
    By

    Remya Balakrishnan,

  • C. Chithiraikumar,

  • Monisha.K,

  • Nallaperumal. A. M.,

  1. Scientist, Application Development Division, Chemical Systems Group, PCM Entity, VSSC, Trivandrum, Kerela, India
  2. Scientist, Application Development Division, Chemical Systems Group, PCM Entity, VSSC, Trivandrum, Kerela, India
  3. Scientist, Application Development Division, Chemical Systems Group, PCM Entity, VSSC, Trivandrum, Kerela, India
  4. Scientist, Application Development Division, Chemical Systems Group, PCM Entity, VSSC, Trivandrum, Kerela, India

Abstract

Polyurethane (PU) is a multi functional polymer prepared by using more than two types of monomers. The unique properties of PU come from monomers, thus broadening the applicability of PU in many different sectors. Furthermore, the antistatic property of PU coatings can be improved by the addition of conductive fillers into matrix thus broadening its application in the manufacture of electronic products, aerospace systems and daily necessities and so on. The use of electrically conductive metal oxides as fillers makes it possible to reduce the resistivity of polymeric materials and slow down the flow of electric charges. In this study, a novel robust low density anti static polyurethane (APU) coating with Titanium dioxide (TiO2) and graphite as conductive fillers were specially designed for application on polyurethane flexible foam for reusable launch vehicles. For this purpose, the effective parameters on resin performance and surface resistivity of the synthesized coating were investigated and optimized. The surface resistivity of antistatic polyurethane coating containing 20-22 wt% TiO2 and graphite reached 105 Ω/sq and 109Ω/sq respectively.

Keywords: Antistatic Polyurethane (APU) Coating, Conductive Fillers, Titanium Dioxide (TiO₂), Graphite, Surface Resistivity

[This article belongs to Journal of Thin Films, Coating Science Technology & Application ]

How to cite this article:
Remya Balakrishnan, C. Chithiraikumar, Monisha.K, Nallaperumal. A. M.. Low density polyurethane based antistatic coating for PU flexible foam for launch vehicles. Journal of Thin Films, Coating Science Technology & Application. 2025; 12(02):25-30.
How to cite this URL:
Remya Balakrishnan, C. Chithiraikumar, Monisha.K, Nallaperumal. A. M.. Low density polyurethane based antistatic coating for PU flexible foam for launch vehicles. Journal of Thin Films, Coating Science Technology & Application. 2025; 12(02):25-30. Available from: https://journals.stmjournals.com/jotcsta/article=2025/view=215576


References

  1. Tsurumaki, S. Tajima, T. Iwata, B. Scrosati, H. Ohno, Antistatic effects of ionic liquids for polyether-based polyurethanes, Electrochim. Acta, 175 (2015) 13-17.
  2. -S. Yen, H.-C. Tsai, P.-D. Hong, The physical properties of aqueous cationic nonionic polyurethane with poly(ethylene glycol methyl ether) side chain and its blend with aqueous cationic polyurethane, J. Appl. Polym. Sci., 100 (2006) 2963-2974.
  3. Harjunalanen, M. Lahtinen, The effects of altered reaction conditions on the properties of anionic poly(urethane-urea) dispersions and films cast from the dispersions, Eur. Polym. J., 39 (2003) 817-824.
  4. Saeed, G. Shabir, Synthesis of thermally stable high gloss water dispersible polyurethane/polyacrylate resins, Prog. Org. Coat., 76 (2013) 1135-1143.
  5. He, Y. Yan, Z. Qiu, X. Tan, A novel antistatic polyurethane hybrid based on nanoscale ionic material, Prog. Org. Coat., 113 (2017) 110-116.
  6. Zia, K.M. Zia, M. Zuber, S. Kamal, N. Aslam, Starch based polyurethanes: a critical review updating recent literature, Carbohydr. Polym., 134 (2015) 784-798.
  7. -H. Haas, S. Amberg-Schwab, K. Rose, Functionalized coating materials based on inorganic-organic polymers, Thin Solid Films, 351 (1999) 198-203.
  8. Shen, L. Feng, X. Liu, H. Luo, Z. Liu, P. Tong, W. Zhang, Multiwall carbon nanotubes-reinforced epoxy hybrid coatings with high electrical conductivity and corrosion resistance prepared via electrostatic spraying, Prog. Org. Coat., 90 (2016) 139-146.
  9. Wang, C. Zhang, Z. Du, H. Li, W. Zou, Functionalization of MWCNTs with silver nanoparticles decorated polypyrrole and their application in antistatic and thermal conductive epoxy matrix nanocomposite, RSC Adv., 6 (2016) 31782-31789.
  10. Zheng, X. Xu, H. Xiao, N. Li, Y. Guan, S. Li, Antistatic modification of polypropylene by incorporating Tween/modified Tween, Appl. Surf. Sci., 258 (2012) 8861-8866.
  11. Zielinski, K. A. Wilk, G. Para, E. Jarek, K. Ciszewski, ´ J. Palus and P. Warszynski, ´ Colloids Surf., A, 480 (2015) 63-70.
  12. He, Y. Yan, Z. Qiu and X. Tan, Prog. Org. Coat., 113 (2017) 110-116.
  13. Iwata, A. Tsurumaki, S. Tajima and H. Ohno, Polymer, 55 (2014) 2501-2504.
  14. Tsurumaki, S. Tajima, T. Iwata, B. Scrosati and H. Ohno, Electrochim. Acta, 248 (2017) 556-561.
  15. Yang, H. Peng, W. Wang and T. Liu, J. Appl. Polym. Sci., 116 (2010) 2658-2667.
  16. Cao, P. Xu, B. Wu, M. Hoch, P. J. Lemstra, W. Yang, W. Dong, M. Du, T. Liu and P. Ma, Compos. Sci. Technol., 190 (2020) 108043.
  17. Mirmohseni, M. Rastgar and A. Olad, J. Appl. Polym. Sci., 137 (2020) 1-11.
  18. Tsurumaki, F. Bertasi, K. Vezzu, E. Negro, V.D. Notode, H. Ohno, Dielectric relaxations of polyether-based polyurethanes containing ionic liquids as antistatic agents, Phys. Chem. Chem. Phys., 18 (2016) 2369-2378.
  19. Iwata, A. Tsurumaki, S. Tajima, H. Ohno, Bis(trifluoromethanesulfonyl)imide-type ionic liquids as excellent antistatic agents for polyurethanes, Macromol. Mater. Eng., 299 (2014) 794-798.

Regular Issue Subscription Review Article
Volume 12
Issue 02
Received 31/05/2025
Accepted 05/06/2025
Published 02/07/2025
Publication Time 32 Days


Login


My IP

PlumX Metrics