Hybrid Machining Processes in Advanced Manufacturing: A Review of Mechanisms and Industrial Applications

Year : 2025 | Volume : 15 | Issue : 02 | Page : 19 24
    By

    Alok Kumar Tiwari,

  1. Research Fellow, Department of Mechanical Engineering, Centre for Advanced Research, Dr. A.P.J. Abdul Kalam Technical University (AKTU), Lucknow, Uttar Pradesh, India

Abstract

Hybrid machining processes (HMPs) have gained considerable attention in recent years as an effective approach to address the growing complexity and performance demands of modern manufacturing systems. These processes combine two or more machining techniques—such as mechanical, thermal, chemical, or electrical methods—into a single setup, enabling enhanced productivity, precision, and adaptability, particularly for hard-to-machine materials like ceramics, composites, and superalloys. The integration of distinct energy sources results in synergistic effects that improve the overall material removal efficiency, reduce tool wear, and achieve superior surface finishes compared to conventional machine approaches. This review systematically explores various categories of HMPs, including laser-assisted machining (LAM), ultrasonic-assisted machining (UAM), electrochemical discharge machining (ECDM), and electrical discharge grinding (EDG), with a focus on their underlying mechanisms and operational principles. It discusses how hybridization offers substantial advantages in machining performance by leveraging the strengths of individual techniques while compensating for their limitations. Additionally, the paper examines the wide-ranging industrial applications of HMPs in aerospace, biomedical, automotive, and precision tooling sectors, where component complexity and material properties demand advanced process capabilities. Key challenges such as process integration, thermal management, tool design, and system control are also highlighted, along with strategies for overcoming them. The review further identifies recent developments, including the integration of artificial intelligence for real-time monitoring and optimization, and sustainable machining practices aimed at reducing energy consumption and environmental impact. Overall, the study provides a comprehensive understanding of hybrid machining systems, their industrial relevance, and their transformative potential in the context of smart and sustainable manufacturing. It serves as a valuable resource for researchers, practitioners, and decision-makers seeking to implement or develop advanced machining solutions in high-performance production environments.

Keywords: Hybrid machining, advanced manufacturing, process mechanisms, multi-process integration, industrial applications, precision engineering

[This article belongs to Journal of Production Research & Management ]

How to cite this article:
Alok Kumar Tiwari. Hybrid Machining Processes in Advanced Manufacturing: A Review of Mechanisms and Industrial Applications. Journal of Production Research & Management. 2025; 15(02):19-24.
How to cite this URL:
Alok Kumar Tiwari. Hybrid Machining Processes in Advanced Manufacturing: A Review of Mechanisms and Industrial Applications. Journal of Production Research & Management. 2025; 15(02):19-24. Available from: https://journals.stmjournals.com/joprm/article=2025/view=0

#logina, #logoutb{}


References

  1. Lauwers B, Klocke F, Klink A, Tekkaya AE, Neugebauer R, Mcintosh D. Hybrid processes in manufacturing. CIRP Ann. 2014;63:561–83. doi:10.1016/j.cirp.2014.05.003.
  2. Kumar A, Jain V. Hybrid machining processes: a review. J Manuf Process. 2020;49:34–52.
  3. Rajurkar KP, Sundaram MM, Malshe AP. Review of electrochemical and electrodischarge machining. Procedia CIRP. 2013;6:13–26. doi:10.1016/j.procir.2013.03.002.
  4. Jiang Z, Song B, Zhou X, Tang X, Zheng S. On-machine measurement of location errors on five-axis machine tools by machining tests and a laser displacement sensor. Int J Mach Tools Manuf. 2015;95:1–12. doi:10.1016/j.ijmachtools.2015.05.004.
  5. Huo D, Cheng K. Vibration assisted machining. Proc Inst Mech Eng C J Mech Eng Sci. 2019;233:4079–80. doi:10.1177/0954406219854227.
  6. Dutta V, Sharma S, Chopra K, Singh B. Hybrid electric discharge machining processes for hard materials: A review. Mater Focus. 2016;5:202–8. doi:10.1166/mat.2016.1361.
  7. Al Javed MO, Bin Rashid AB. Laser-assisted micromachining techniques: An overview of principles, processes, and applications. Adv Mater Process Technol. 2024:1–44. doi:10.1080/237
    2024.2397156.
  8. Dutta S, Sarma DK, Vora J, Chaudhari R, Bhowmik A, Samal P, et al. A state-of-the-art review on micro-machining of nitinol shape memory alloys and optimization of process variables considering the future trends of research. J Manuf Mater Process. 2025;9:183. doi:10.3390/jmmp9060183.
  9. Bassu M, Strambini LM, Barillaro G. Advances in electrochemical micromachining of silicon: Towards MEMS fabrication. Procedia Eng. 2011;25:1653–6. doi:10.1016/j.proeng.2011.12.409.
  10. Ghoshal B, Bhattacharyya B. Influence of vibration on micro-tool fabrication by electrochemical machining. Int J Mach Tools Manuf. 2013;64:49–59. doi:10.1016/j.ijmachtools.2012.07.014.
  11. Munda J, Malapati M, Bhattacharyya B. Control of micro-spark and stray-current effect during EMM process. J Mater Process Technol. 2007;194:151-8. doi:10.1016/j.jmatprotec.2007.04.112.
  12. Sun C, Zhu D, Li Z, Wang L. Application of FEM to tool design for electrochemical machining freeform surface. Finite Elem Anal Des. 2006;43:168–72. doi:10.1016/j.finel.2006.08.004.

Regular Issue Subscription Review Article
Volume 15
Issue 02
Received 10/07/2025
Accepted 25/07/2025
Published 07/08/2025
Publication Time 28 Days

[last_name]

My IP

PlumX Metrics

.mq{
display: flex; justify-content: space-between; width: 1280px; margin: auto; }
.flx {display: flex;margin: 2px; flex-flow: wrap;}
.jcsb {justify-content: space-between;}
.w1280 {width: 1280px; margin: auto;}
.w75p {width: 75%; background-color:white; padding:4px 20px 4px 20px; margin:0 10px 0 0; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19);}
.w25p {width: 25%; background-color:white; padding: 4px 10px 4px 10px; margin: 0 0 0 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19);}
.dvct {border: 1px solid navajowhite; padding: 4px; margin-bottom: 4px; background: #fffde5; color: black;}
.post-views {text-align: center;}
.ALLreveiwers img,
.ALLeditors img {
width: 50px;
height: 50px;
border-radius: 50px;
margin: 10px;
}
.ALLreveiwers,
.ALLeditors {
border-bottom: 1px solid black;}
.modaltext {
color: white;
padding: 0px 30px 0px 30px;
text-decoration: none;
}
.modaltext:hover {
color: black;
background-color: rgb(255 221 204);
color: black;
}
.modal-content {
margin-top: 50%;
}
table,
tr,
td {
padding: 10px;
border: none;
}
h2 {
font-size: 16px !important;
font-family: ‘Roboto’, Slab !important;
line-height: 1.4em;
}
h3 {
font-size: 16px !important;
font-family: ‘Roboto’, Slab !important;
}
h4 {
font-family: ‘Roboto’, Slab !important;
}
p {
font-size: 14px !important;
font-family: ‘Roboto’, Slab !important;
}
a {
color: blue;
font-size: 15px !important;
font-family: ‘Roboto’, Slab !important;
}
li,
p {
font-size: 15px !important;
font-family: ‘Roboto’, Slab !important;
text-align: justify;
}
.authdiv img {
max-width: 17px;
max-height: 17px;
}
.authdiv {
display: flex;
padding: 1px 2px;
}
@media only screen and (max-width:768px){
.mq{display:block; width:100%; padding:4px;}
.w75p{width:90%;}
.w25p{width:90%; margin-top: 10px;}
}


.resp{font-weight: 600;}