Optimization and CFD Analysis of Fin-Enhanced Cooling Systems for Improved PV Efficiency

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2025 | Volume :15 | Issue : 01 | Page : 41-50
By
vector

Jahangir Alam Alam,

vector

H. S. Sahu,

  1. M Tech Scholar, Department of Electronics & Communication Engineering, Mittal Institute of Technology, Bhopal, Madhya Pradesh, India
  2. Assistant Professor, Department of Electronics & Communication Engineering, Mittal Institute of Technology, Bhopal, Madhya Pradesh, India

Abstract

“] document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_146665’);});Edit Abstract & Keyword

This study is about optimizing and doing a CFD (Computational Fluid Dynamics) analysis of fin-enhanced cooling systems to improve the efficiency of photovoltaic (PV) systems. Photovoltaic (PV) panels are sensitive to temperature changes; the temperature influences the performance and lifespan of these panels. High temperatures cause their electrical output to reduce, thereby limiting their performance. In order to address this problem, several coolants such as air, liquid, phase change materials, nanofluids, are used. This paper provides a focus on hybrid cooling of air and liquid cooling methods while trying to enhance the thermoregulation of power generation in high-humid conditions. The methodology applied in this study considers CFD simulations to optimize flow and prevent condensation hence significantly enhancing the thermal performance in PV systems. In addition, analysis is also done on the use of nanomaterials including nanoparticles and nanofluids application to further increase the efficiency of cooling of the PV panel. The results shown are an optimized hybrid system that achieves a reduction of almost 40% of condensation and enhances the thermal stability and energy efficiency.

Keywords: Photovoltaic, cooling systems, CFD simulations, phase change materials, nanofluids, thermal management.

[This article belongs to Journal of Power Electronics and Power Systems (jopeps)]

How to cite this article:
Jahangir Alam Alam, H. S. Sahu. Optimization and CFD Analysis of Fin-Enhanced Cooling Systems for Improved PV Efficiency. Journal of Power Electronics and Power Systems. 2025; 15(01):41-50.
How to cite this URL:
Jahangir Alam Alam, H. S. Sahu. Optimization and CFD Analysis of Fin-Enhanced Cooling Systems for Improved PV Efficiency. Journal of Power Electronics and Power Systems. 2025; 15(01):41-50. Available from: https://journals.stmjournals.com/jopeps/article=2025/view=0

“]document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_146665’);});Edit

References

  1. Kazem, H. A., Al-Waeli, A. A., Chaichan, M. T., Sopian, K., & Al-Amiery, A. A. (2023). Enhancement of photovoltaic module performance using passive cooling (Fins): A comprehensive review. Case Studies in Thermal Engineering, 103316.
  2. Mahdi, E. J., Algburi, S., Al-Abadi, N., Ahmed, O. K., & Ahmed, A. K. (2024). Photovoltaic panel cooling using ground source energy: CFD simulation. Results in Engineering, 22, 102144.
  3. Cabrera-Escobar, R., Vera, D., Cabrera-Escobar, J., Paredes Godoy, M. M., Cajamarca Carrazco, D., Zumba Llango, E. R., & Jurado, F. (2024). Finite Element Analysis Method Design and Simulation of Fins for Cooling a Monocrystalline Photovoltaic Panel. Clean Technologies, 6(2), 767-783.
  4. Abdelaty, T., Chaudhry, H. N., & Calautit, J. K. (2023). Investigation of Cooling Techniques for Roof-Mounted Silicon Photovoltaic Panels in the Climate of the UAE: A Computational and Experimental Study. Energies, 16(18), 6706.
  5. Ghanim, M. S., & Farhan, A. A. (2022). Performance evaluation of the photovoltaic thermal system with a fin array and surface zigzag layout. International Journal of Low-Carbon Technologies, 17, 1166-1176.
  6. Dhumal, A. R., Kulkarni, A. P., & Ambhore, N. H. (2023). A comprehensive review on thermal management of electronic devices. Journal of Engineering and Applied Science, 70(1), 140.
  7. Marques Lameirinhas, R. A., Torres, J. P. N., & de Melo Cunha, J. P. (2022). A photovoltaic technology review: History, fundamentals and applications. Energies, 15(5), 1823.
  8. Omri, M., Selimefendigil, F., Smaoui, H. T., & Kolsi, L. (2022). Cooling system design for photovoltaic thermal management by using multiple porous deflectors and nanofluid. Case Studies in Thermal Engineering, 39, 102405.
  9. Liang, J., Wu, J., Guo, J., Li, H., Zhou, X., Liang, S., … & Tao, G. (2023). Radiative cooling for passive thermal management towards sustainable carbon neutrality. National Science Review, 10(1), nwac208.
  10. Vodapally, S. N., & Ali, M. H. (2022). A comprehensive review of solar photovoltaic (PV) technologies, architecture, and its applications to improved efficiency. Energies, 16(1), 319.
  11. Al-Ezzi, A. S., & Ansari, M. N. M. (2022). Photovoltaic solar cells: a review. Applied System Innovation, 5(4), 67.
  12. Chowdhury, A. A., Rasul, M. G., & Khan, M. M. K. (2022). Thermal performance assessment of a retrofitted building using an integrated energy and computational fluid dynamics (IE-CFD) approach. Energy Reports, 8, 709-717.
  13. Rahman, M. S. (2024). Computational fluid dynamics for predicting and controlling fluid flow in industrial equipment. European Journal of Advances in Engineering and Technology, 11(9), 1-9.
  14. Zhou, Q., Dong, P., Li, M., & Wang, Z. (2023). Analyzing the interactions between photovoltaic system and its ambient environment using CFD techniques: A review. Energy and Buildings, 113394.
  15. Hasan, H. A., Hatem, A. A., Abd, L. A., Abed, A. M., & Sopian, K. (2022). Numerical investigation of nanofluids comprising different metal oxide nanoparticles for cooling concentration photovoltaic thermal CPVT. Cleaner Engineering and Technology, 10, 100543.
  16. Ahmed, Y. E., Maghami, M. R., Pasupuleti, J., Danook, S. H., & Basim Ismail, F. (2024). Overview of Recent Solar Photovoltaic Cooling System Approach. Technologies, 12(9), 171.
  17. Sharaf, M., Yousef, M. S., & Huzayyin, A. S. (2022). Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environmental science and pollution research, 29(18), 26131-26159.
  18. Mahdavi, A., Farhadi, M., Gorji-Bandpy, M., & Mahmoudi, A. (2022). A review of passive cooling of photovoltaic devices. Cleaner Engineering and Technology, 11, 100579.
  19. Ghazy, M., Ibrahim, E. M. M., Mohamed, A. S. A., & Askalany, A. A. (2022). Cooling technologies for enhancing photovoltaic–thermal (PVT) performance: a state of the art. International Journal of Energy and Environmental Engineering, 13(4), 1205-1235.
  20. Kazem, H. A., Al-Waeli, A. A., Chaichan, M. T., Sopian, K., & Al-Amiery, A. A. (2023). Enhancement of photovoltaic module performance using passive cooling (Fins): A comprehensive review. Case Studies in Thermal Engineering, 103316.
  21. Benato, A., Stoppato, A., De Vanna, F., & Schiro, F. (2021). Spraying cooling system for PV modules: experimental measurements for temperature trends assessment and system design feasibility. Designs, 5(2), 25.
  22. Kandeal, A. W., Algazzar, A. M., Elkadeem, M. R., Thakur, A. K., Abdelaziz, G. B., El-Said, E. M., … & Sharshir, S. W. (2021). Nano-enhanced cooling techniques for photovoltaic panels: A systematic review and prospect recommendations. Solar Energy, 227, 259-272.
  23. Sheik, M. A., Aravindan, M. K., Cuce, E., Dasore, A., Rajak, U., Shaik, S., … & Riffat, S. (2022). A comprehensive review on recent advancements in cooling of solar photovoltaic systems using phase change materials. International Journal of Low-Carbon Technologies, 17, 768-783.
  24. Sohail, A., Rusdi, M. S., Waseem, M., Abdullah, M. Z., Pallonetto, F., & Sultan, S. M. (2024). Cutting-edge developments in active and passive photovoltaic cooling for reduced temperature operation. Results in Engineering, 102662.
  25. Zhang, B., Yuan, N., Kong, B., Zou, Y., & Shi, H. An Innovative Hybrid Air-Cooled and Liquid-Cooled System for Condensation Prevention. Available at SSRN 4784079.
  26. Gao, C., Lan, X., He, Z., Xin, G., Wang, X., & Xin, Q. (2023). Temperature uniformity analysis and multi-objective optimization of a small-scale variable density alternating obliquely truncated microchannel. Thermal Science and Engineering Progress, 38, 101652.
  27. Hinojosa, J. F., Moreno, S. F., & Maytorena, V. M. (2023). Low-temperature applications of phase change materials for energy storage: a descriptive review. Energies, 16(7), 3078.
  28. Al-Yasiri, Q., & Szabó, M. (2021). Influential aspects on melting and solidification of PCM energy storage containers in building envelope applications. International Journal of Green Energy, 18(9), 966-986.
  29. Ye, W., Jamshid Asli, D., & Khodadadi, J. M. (2023). Improved performance of latent heat energy storage systems in response to utilization of high thermal conductivity fins. Energies, 16(3), 1277.

Regular Issue Subscription Review Article
Volume 15
Issue 01
Received 20/12/2024
Accepted 02/01/2025
Published 07/01/2025