Hybrid Composite Behavior of Concrete-Filled Steel Tube (CFST) Columns: Review of Collapse Mechanisms and Polymer-Based Enhancements

Year : 2026 | Volume : 14 | Special Issue 01 | Page : 78 97
    By

    Vishwas Pramod Kulkarni,

  • Arjun Rama Vasatkar,

  1. Research Scholar, Department of Civil Engineering, Ajeenkya D Y Patil University, Maharashtra, India
  2. Research Guide, Department of Civil Engineering, Ajeenkya D Y Patil University, Maharashtra, India

Abstract

Concrete-Filled Steel Tube (CFST) columns are an advanced hybrid composite system where the steel tube’s confinement and the concrete core’s load capacity work together to improve structural performance. While commonly used in civil engineering, CFSTs can also be understood within the framework of composite materials, similar to polymer- and fiber-reinforced composites, in which interactions between phases determine strength, ductility, and failure modes. This review compiles experimental and numerical research on the collapse of CFST columns under various boundary conditions, focusing on how steel–concrete interactions affect load capacity, deformation, and failure. Recent innovations, including fiber-reinforced polymers (FRP), nanomaterials, rubberized concrete, and sustainable fillers, are discussed to expand CFST applications into polymer-composite fields. The role of advanced finite element analysis (FEA) and machine learning in predicting collapse behavior, especially with hybrid or polymer-based materials, is also covered. By viewing CFSTs as multifunctional composite systems, this work connects structural mechanics with polymer science, highlights gaps in current knowledge, and suggests future research into incorporating polymers, fibers, and recycled fillers to develop next-generation, high-performance, sustainable composite columns suitable for extreme conditions. Investigations into the long-term behavior of CFST columns, including creep, concrete core shrinkage, and steel tube corrosion, especially under variable environmental and loading conditions, are needed. The behavior of CFST columns at high temperatures and their residual strength after post-fire exposure are other critical areas requiring further experimental and numerical exploration.

Keywords: Concrete-filled steel tube (CFST) columns, confined concrete columns, dynamic increase factors (DIFs), fibre-reinforced polymers (FRP), finite element analysis (FEA), polymer-modified binders

[This article belongs to Special Issue under section in Journal of Polymer & Composites (jopc)]

aWQ6MjM1MDEyfGZpbGVuYW1lOjBkOGM0ODE2LWZpLmF2aWZ8c2l6ZTp0aHVtYm5haWw=
How to cite this article:
Vishwas Pramod Kulkarni, Arjun Rama Vasatkar. Hybrid Composite Behavior of Concrete-Filled Steel Tube (CFST) Columns: Review of Collapse Mechanisms and Polymer-Based Enhancements. Journal of Polymer & Composites. 2025; 14(01):78-97.
How to cite this URL:
Vishwas Pramod Kulkarni, Arjun Rama Vasatkar. Hybrid Composite Behavior of Concrete-Filled Steel Tube (CFST) Columns: Review of Collapse Mechanisms and Polymer-Based Enhancements. Journal of Polymer & Composites. 2025; 14(01):78-97. Available from: https://journals.stmjournals.com/jopc/article=2025/view=235018


References

  1. Wang Y, Chen P, Liu C, Zhang Y. Size effect of circular concrete-filled steel tubular short columns subjected to axial compression. Thin-Walled Struct. 2017;120:397–407. doi:10.1016/j.tws.2017.09.010.
  2. Eladly MM, Schafer BW. Numerical and analytical study of stainless-steel beam-to-column extended end-plate connections. Eng Struct. 2021;240:112392. doi:10.1016/j.engstruct.2021.112392.
  3. Mou B, Li X, Bai Y, He B, Patel VI. Numerical evaluation on shear behavior of irregular steel beam-to-CFST column connections. J Constr Steel Res. 2018;148:422–435. doi:10.1016/j.jcsr.2018.06.002.
  4. Schneider SP, Alostaz YM. Experimental behavior of connections to concrete-filled steel tubes. J Constr Steel Res. 1998;45(3):321–352. doi:10.1016/S0143-974X(97)00071-0.
  5. Wang X, Fan F, Lai J. Strength behavior of circular concrete-filled steel tube stub columns under axial compression: A review. Constr Build Mater. 2022;322:126144. doi:10.1016/j.conbuildmat.2021.126144.
  6. Chua YS, Pang SD, Liew JYR, Dai Z. Robustness of inter-module connections and steel modular buildings under column loss scenarios. J Build Eng. 2022;47:103888. doi:10.1016/j.jobe.2021.103888.
  7. Jin L, Chen H, Wang Z, Du X. Size effect on axial compressive failure of CFRP-wrapped square concrete columns: Tests and simulations. Compos Struct. 2020;254:112843. doi:10.1016/j.compstruct.2020.112843.
  8. Wang P, Sun L, Zhang B, Yang X, Liu F, Han Z. Experimental studies on T-stub to hollow section column connections bolted by T-head square-neck one-side bolts under tension. J Constr Steel Res. 2021;178:106493. doi:10.1016/j.jcsr.2020.106493.
  9. Schneider SP. Experimental behavior of connections to concrete-filled steel tubes. Struct Congr Proc. 1997;2:954–958.
  10. Yang J, Sheehan T, Dai XH, Lam D. Experimental study of beam to concrete-filled elliptical steel tubular column connections. Thin-Walled Struct. 2015;95:16–23. doi:10.1016/j.tws.2015.06.009.
  11. Lu Y, Li N, Li S, Liang H. Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Constr Build Mater. 2015;95:74–85. doi:10.1016/j.conbuildmat.2015.07.114.
  12. Ding FX, et al. Hysteretic behavior of CFST column–steel beam bolted joints with external reinforcing diaphragm. J Constr Steel Res. 2021;183:106729. doi:10.1016/j.jcsr.2021.106729.
  13. Zheng L, Wang WD, Xian W. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connections with CFST columns and composite beams. Eng Struct. 2022;256:114061. doi:10.1016/j.engstruct.2022.114061.
  14. Elghazouli AY, Mujdeci A, Bompa DV, Guo YT. Experimental cyclic response of rubberised concrete-filled steel tubes. J Constr Steel Res. 2022;199:107622. doi:10.1016/j.jcsr.2022.107622.
  15. Abendeh RM, Salman D, Al Louzi R. Experimental and numerical investigations of interfacial bond in self-compacting concrete-filled steel tubes made with waste steel slag aggregates. Dev Built Environ. 2022;11:100080. doi:10.1016/j.dibe.2022.100080.
  16. Isleem HF, Chukka NDKR, Bahrami A, Oyebisi S, Kumar R, Qiong T. Nonlinear finite element and analytical modelling of reinforced concrete-filled steel tube columns under axial compression loading. Results Eng. 2023;19:101341. doi:10.1016/j.rineng.2023.101341.
  17. Li P, Zhang T, Wang C. Behavior of concrete-filled steel tube columns subjected to axial compression. Adv Mater Sci Eng. 2018;2018:4059675. doi:10.1155/2018/4059675.
  18. Zheng L, Yang H. Numerical study on the axial compression performance of concrete-filled steel tubular hybrid columns. IOP Conf Ser Mater Sci Eng. 2018;392:022032. doi:10.1088/1757-899X/392/2/022032.
  19. Elghazouli AY, Mujdeci A, Bompa DV, Guo YT. Experimental cyclic response of rubberised concrete-filled steel tubes. J Constr Steel Res. 2022;199:107622. doi:10.1016/j.jcsr.2022.107622.
  20. Ghanbari-Ghazijahani T, Azandariani MG, Vimonsatit V, Sulong NHR. Experiments and design of concrete-filled steel tubes with timber chips under axial compression. Thin-Walled Struct. 2023;186:110679. doi:10.1016/j.tws.2023.110679.
  21. Zhao B, et al. Artificial neural network assisted bearing capacity and confining pressure prediction for rectangular concrete-filled steel tube (CFT). Alexandria Eng J. 2023;74:517–533. doi:10.1016/j.aej.2023.05.031.
  22. Singh H, Tiwary AK, Eldin SM, Ilyas RA. Behavior of stiffened concrete-filled steel tube columns infilled with nanomaterial-based concrete subjected to axial compression. J Mater Res Technol. 2023;24:9580–9593. doi:10.1016/j.jmrt.2023.05.135.
  23. Isleem HF, Chukka NDKR, Bahrami A, Oyebisi S, Kumar R, Qiong T. Nonlinear finite element and analytical modelling of reinforced concrete filled steel tube columns under axial compression loading. Results Eng. 2023;19:101341. doi:10.1016/j.rineng.2023.101341.
  24. Tao Z, Song TY, Uy B, Han LH. Bond behavior in concrete-filled steel tubes. J Constr Steel Res. 2016;120:81–93. doi:10.1016/j.jcsr.2015.12.030.
  25. Wang JX, Shen YJ, Zhou K, Yang Y. Experimental and numerical study on progressive collapse of composite steel–concrete frames. Steel Compos Struct. 2024;50(5):531–548. doi:10.12989/scs.2024.50.5.531.
  26. Fang C, Li GC, Zhang L, Yang ZJ. Experimental and numerical investigation on seismic performance of ring-beam connection to gangue concrete-filled steel tubular columns. Adv Steel Constr. 2022;18(1):506–516. doi:10.18057/IJASC.2022.18.1.9.
  27. Sun J, Geng Y, Zhang H, Yin H, Wang Y. Experimental and numerical study on slender concrete-filled steel tubular arches subjected to tilting loads. Thin-Walled Struct. 2022;179:109701. doi:10.1016/j.tws.2022.109701.
  28. Tiwary AK. Experimental investigation into mild steel circular concrete-filled double skin steel tube columns. J Constr Steel Res. 2022;198:107527. doi:10.1016/j.jcsr.2022.107527.
  29. Yang ZM, Chen J, Wang F, Wang J. Seismic performance of circular concrete-filled steel tube columns reinforced with inner latticed steel angles. J Constr Steel Res. 2023;205:107908. doi:10.1016/j.jcsr.2023.107908.
  30. Li J, Luo J, Chen L, Fan X, Zhu Y, Wang X. Axial-compression performance and numerical-simulation analysis of steel tube coal gangue concrete column. J Constr Steel Res. 2024;216:108612. doi:10.1016/j.jcsr.2024.108612.
  31. Chen Z, Dong S, Du Y. Experimental study and numerical analysis on seismic performance of FRP-confined high-strength rectangular concrete-filled steel tube columns. Thin-Walled Struct. 2021;162:107560. doi:10.1016/j.tws.2021.107560.
  32. Zheng L, Wang WD, Xian W. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connection with CFST column and composite beam. Eng Struct. 2022;256:114061. doi:10.1016/j.engstruct.2022.114061.
  33. Nie X, Duan L, Zhuang L, Ding R, Fan J. Experimental and numerical study on steel–concrete composite frames with engineered cementitious composites. Eng Struct. 2022;265:114489. doi:10.1016/j.engstruct.2022.114489.
  34. Zou Y, Wang L, Sun Z, Pan J, Chen M, Wu Y. Experimental and numerical studies of concrete-filled corrugated steel tubular column under axial compression. Eng Struct. 2023;276:114813. doi:10.1016/j.engstruct.2022.114813.
  35. Ma Y, Ma K, Han X, Yao T. Experimental investigation of FRP-confined HSC-filled steel tube stub columns under axial compression. Eng Struct. 2023;280:115670. doi:10.1016/j.engstruct.2023.115670.
  36. Singh H, Tiwary AK. Experimental and numerical investigation on concrete-filled steel tube columns reinforced with diagonal stiffeners under axial loading. Eng Struct. 2023;292:116602. doi:10.1016/j.engstruct.2023.116602.
  37. Fang Y, Yang H, Chan T, Wang Y. Experimental investigation on seismic behaviour of concrete-filled corrugated steel tubes under cyclic torsional loads. Eng Struct. 2024;309:118062. doi:10.1016/j.engstruct.2024.118062.
  38. Gao B, Xu L, Huang L, Chi Y, Yu M, Wen S. Seismic performance of a novel concrete-filled steel tube column to continuous reinforced concrete beam joint with multiple openings in the core region. Eng Struct. 2024;319:118775. doi:10.1016/j.engstruct.2024.118775.
  39. Ding F, Zhang S, Pan Z, Lei J, Wang L, Duan L. Seismic performance of square concrete-filled steel tubular column–composite beam single-side bolted joints: Experimental and numerical study. Eng Struct. 2025;322:119035. doi:10.1016/j.engstruct.2024.119035.
  40. Ji S, Wang W, Shi Y, Wang J. Numerical analysis on fire behaviour of concrete-filled steel tubular columns after lateral impact. Eng Struct. 2025;327:119632. doi:10.1016/j.engstruct.2025.119632.
  41. Lan X, Wang Y, Zhang Y, Tan B. Complete failure behaviour of bolted diaphragm connections to concrete-filled tubes at elevated temperatures. Eng Struct. 2025;328:119698. doi:10.1016/j.engstruct.2025.119698.
  42. Wei G, Wang W, Zhou K, Mao W. Experimental and numerical investigation of circular concrete-filled steel tubular columns subjected to post-earthquake fires. Eng Struct. 2025;332.
  43. [Abendeh RM, Salman D, Al R. Comparative study on structural behaviour of circular and square section concrete-filled steel tube (CFST) and reinforced cement concrete (RCC) stub column. 2021;29:2067–2081. doi:10.1016/j.istruc.2020.12.078.
  44. Xian W, Chen W, Hao H, Wang W. Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular members subjected to lateral impact. Thin-Walled Struct. 2021;160:107409. doi:10.1016/j.tws.2020.107409.
  45. Wang S, Wang W, Xie Z. Nonlinear cyclic behavior of steel tube in concrete-filled steel tube members including local buckling. Thin-Walled Struct. 2023;191:111055. doi:10.1016/j.tws.2023.111055.
  46. Huang H, Guo L, Zhao O, Gao S. Experimental and numerical investigation into locally corroded circular concrete-filled steel tubular stub columns strengthened by CFRP. Thin-Walled Struct. 2023;192:111174. doi:10.1016/j.tws.2023.111174.
  47. Lin S, Zhang B, Zhang S, Zhang Y, Hu X. Dynamic responses of concrete-filled steel tubes impacted horizontally by a rigid vehicle. Thin-Walled Struct. 2024;199:111826. doi:10.1016/j.tws.2024.111826.
  48. Abendeh RM, Salman D, Al R. Experimental and numerical investigations of interfacial bond in self-compacting concrete-filled steel tubes made with waste steel slag aggregates. Dev Built Environ. 2022;11:100080. doi:10.1016/j.dibe.2022.100080.
  49. Zhang Z, Wu X, Hu G, Sun Q. Numerical study on triaxial compressive behavior of engineered cementitious composites confined by circular steel tubes. Constr Build Mater. 2022;345:128285. doi:10.1016/j.conbuildmat.2022.128285.
  50. Wang Y, Zeng W, Ayough P, Ren W, Wang W. Axial compression performance of rubberized concrete-filled steel tubular stub columns after fire exposure. Constr Build Mater. 2024;438:137129. doi:10.1016/j.conbuildmat.2024.137129.
  51. Xu R, Chen Z, Ning F. Axial compression mechanism and numerical analysis of CFRP–PVC tube and I-shaped steel composite confined concrete column. Constr Build Mater. 2025;461:139931. doi:10.1016/j.conbuildmat.2025.139931.
  52. Chang Q, et al. Concrete-filled double steel tube columns incorporating UPVC pipes under uniaxial compressive load at ambient and elevated temperature. Case Stud Constr Mater. 2022;16:e00907. doi:10.1016/j.cscm.2022.e00907.
  53. Abadel AA, Khan MI, Masmoudi R. Experimental and numerical study of compressive behavior of axially loaded circular ultra-high-performance concrete-filled tube columns. Case Stud Constr Mater. 2022;17:e01376. doi:10.1016/j.cscm.2022.e01376.
  54. Shi Q, Ying Y, Wang B. Experimental investigation on the seismic performance of concrete-filled steel tubular joints in diagrid structures. 2021;31:230–247. doi:10.1016/j.istruc.2021.01.089.
  55. Gao X, Wang W, Teh LH. Experimental and numerical investigations of tensile behavior of slip-critical blind bolts anchored in concrete-filled steel tubes. 2023;55:354–369. doi:10.1016/j.istruc.2023.06.041.
  56. Hamoda AA, Ahmed M, Abadel AA, Ghalla M, Ishvarbhai V, Quan Q. Experimental and numerical studies of circular precast concrete slender columns with intermediate connection filled with high-performance concrete. 2023;57:105204. doi:10.1016/j.istruc.2023.105204.
  57. Ma X, et al. Experimental and numerical study on the impact response of the steel–concrete–steel–foam-filled-tube energy absorbing structure. 2024;62:106278. doi:10.1016/j.istruc.2024.106278.
  58. Tang X, Yang Y, Yang W, Lanning J, Frank Y. Experimental and numerical investigation on the seismic behavior of plane frames with special-shaped concrete-filled steel tubular columns. J Build Eng. 2021;35:102070. doi:10.1016/j.jobe.2020.102070.
  59. Chen S, Liu Y, Luo J, Gao S. Experimental and numerical analysis on rectangular concrete-filled steel tubular columns with T-shaped stiffeners. J Build Eng. 2022;45:103510. doi:10.1016/j.jobe.2021.103510.
  60. [Yang Y, Xue J, Liu Z, Wang J, Wang X. Experimental and numerical study on seismic behavior of spliced high-strength concrete-filled steel tubular column to precast RC beam frame. J Build Eng. 2025;104:112301. doi:10.1016/j.jobe.2025.112301.
  61. Wang K, Xiong J, Xiong M, Chen L, Yao C. Experimental and numerical study on progressive collapse resistance of novel fully assembled concrete beam–column connections. J Build Eng. 2025;105:112516. doi:10.1016/j.jobe.2025.112516.
  62. Niyirora R, et al. Behavior of concrete-encased concrete-filled steel tube columns under diverse loading conditions: A review. Cogent Eng. 2023;10(1). doi:10.1080/23311916.2022.2156056.
  63. Abadel AA. Structural performance of strengthening of high-performance geopolymer concrete columns utilizing different confinement materials. 2023.
  64. Al-Ezzi MJ, Ayamsir A, Supian ABM, Beddu S. Flexural behavior and failure modes of pultruded GFRP tube concrete-filled composite beams: A review. 2024.
  65. Ci J, Ahmed M, Jia H, Chen S. Experimental and numerical investigations of square concrete-filled double steel tubular stub columns. Proc Inst Mech Eng Part L. doi:10.1177/13694332211004111.
  66. Li X, Zhou X, Wang X, Chen YF. Experimental and numerical investigations on seismic behavior of circular tubed reinforced concrete column to RC beam frames. 2022;1224–1244. doi:10.1002/eeqe.612.
  67. Fang C, Zhang L. Experimental and numerical investigation on seismic performance of ring-beam connection to gangue concrete-filled steel tubular columns. Adv Steel Constr. doi:10.18057/IJASC.2022.18.1.9.
  68. Hui C, Li K, Li Y, Bian Y, Hai R, Li C. Experimental study and analysis on axial compression performance of high-strength recycled concrete-filled steel tube column in corrosive environments. Int J Steel Struct. 2022;22:450–471. doi:10.1007/s13296-022-00584-4.
  69. Khaloo A, Borhani MH, Habibi O. Experimental and numerical investigation on the performance of GFRP-confined expansive concrete-filled PVC tubes. J Reinf Plast Compos. 2024;37(3):983–1011. doi:10.1177/08927057231190558.
  70. Alrebeh SK, Ahmed AD, Al AK, Talha A. Experimental performance evaluation of concrete-filled steel tube columns confined by high-strength steel bolts. Int J Steel Struct. 2023;23(4):1135–1147. doi:10.1007/s13296-023-00755-x.
  71. Singh H, Tiwary AK. Axial compression behaviour of concrete-filled double skin steel tube columns anchored with orbicular rings. J Struct Eng. 2023;26(15):2830–2861. doi:10.1177/13694332231205054.
  72. Wang Q, Liu K, Zhang M. Numerical studies on the performance of circular FRP–concrete-filled steel tube stub columns under axial compression. 2022. doi:10.1177/07316844211051707.

Special Issue Subscription Review Article
Volume 14
Special Issue 01
Received 10/09/2025
Accepted 15/10/2025
Published 29/12/2025
Publication Time 110 Days


Login


My IP

PlumX Metrics