Daya Shankar Prasad,
Pradeep Kumar Singh,
- Assistant Professor, Department of Mechanical Engineering, MVN University, Palwal, Haryana, India
- Assistant Professor, Department of Mechanical Engineering, GLA University, Mathura, Uttar Pradesh, India
Abstract
In this study, amine-functionalized graphene (AFG) was employed as a nanofiller/nanomaterial to enhance the thermal and structural properties of a paraffin wax (PW)-based polymeric composite, formulated as a phase change material (PCM). The PW/AFG composite was synthesized with varying nanofiller volume fractions (0.20%, 0.40%, 0.80%, and 1.60%), and its thermal conductivity, stability, and energy storage performance were systematically analyzed. The incorporation of AFG into the polymer matrix significantly improved the composite’s thermal conductivity, achieving enhancements of 13.58% to 46.42%. The experimental results confirmed the duration of composite charging time reduced by 61.5% and discharging time extended by 62.5% with increasing the concentration of nanofiller in PW. The rheological and morphological behavior of the composites was also studied to understand filler-matrix interactions. The composite exhibited enhanced thermal stability and latent heat storage, confirming effective dispersion and compatibility of AFG within the paraffin matrix. It has been observed that the optimal concentration is 0.8 vol% based on a comparative analysis of thermal conductivity, charging/discharging times, and stability across various concentrations. These results highlight the potential of polymer-based composite PCMs for advanced thermal energy storage applications.
Keywords: Nanocomposite; polymer; phase change material (PCM); amine-functionalized graphene; thermal stability.
[This article belongs to Journal of Polymer and Composites ]
Daya Shankar Prasad, Pradeep Kumar Singh. Thermal Conductivity and Energy Storage Performance of Paraffin Wax-Based Composites Reinforced with Amine Functionalized Graphene as a Nanofiller. Journal of Polymer and Composites. 2025; 13(05):355-374.
Daya Shankar Prasad, Pradeep Kumar Singh. Thermal Conductivity and Energy Storage Performance of Paraffin Wax-Based Composites Reinforced with Amine Functionalized Graphene as a Nanofiller. Journal of Polymer and Composites. 2025; 13(05):355-374. Available from: https://journals.stmjournals.com/jopc/article=2025/view=227189
Browse Figures
References
- Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318-345. doi:10.1016/j.rser.2007.10.005.
- Kuznik F, David D, Johannes K, Roux JJ. A review on phase change materials integrated in building walls. Renew Sustain Energy Rev. 2011;15(1):379-391. doi:10.1016/j.rser.2010.08.019.
- Zhang H, Baeyens J, Cáceres G, Degrève J, Lv Y. Thermal energy storage: Recent developments and practical aspects. Prog Energy Combust Sci. 2016;53:1-40. doi:10.1016/j.pecs.2015.10.003.
- Nedjem K, Teggar M, Hadibi T, Benkherouf A. Hybrid thermal performance enhancement of shell and tube latent heat thermal energy storage using nano-additives and metal foam. J Energy Storage. 2021;44:103347. doi:10.1016/j.est.2021.103347.
- Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer, and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev. 2010;14(2):615-628. doi:10.1016/j.rser.2009.10.015.
- Khodadadi JM, Hosseinizadeh SF. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass Transf. 2007;34(5):534-543. doi:10.1016/j.icheatmasstransfer.2007.02.005.
- Zhou D, Zhao CY, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy. 2012;92:593-605. doi:10.1016/j.apenergy.2011.08.025.
- Farid MM, Khudhair AM, Razack SA, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manag. 2004;45(9-10):1597-1615. doi:10.1016/j.enconman.2003.09.015.
- Cabeza LF, Castell A, Barreneche C, de Gracia A, Fernández AI. Materials used as PCM in thermal energy storage in buildings: A review. Renew Sustain Energy Rev. 2011;15(3):1675-1695. doi:10.1016/j.rser.2010.11.018.
- Sharma RK, Ganesan P, Tyagi VV, Metselaar HSC, Sandaran SC. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers Manag. 2015;95:193-228. doi:10.1016/j.enconman.2015.01.084.
- Sun X, Liu L, Mo Y, Yang S, Li Z. Enhanced thermal energy storage of a paraffin-based phase change material (PCM) using nano carbons. Appl Therm Eng. 2020;178:115992. doi:10.1016/j.applthermaleng.2020.115992.
- Ermis K, Findik F. Thermal energy storage: A review article on thermal energy storage. Sustain Eng Innov. 2020;2(2):66-88. doi:10.37868/sei.v2i2.115.
- Tao YB, He YL. A review of phase change material and performance enhancement method for latent heat storage system. Renew Sustain Energy Rev. 2018;93:245-259. doi:10.1016/j.rser.2018.05.028.
- Singh RP, Kaushik SC, Rakshit D. Performance evaluation of charging process in a cascade latent heat storage system (C-LHSS) based on heat flux DSC results. Int J Therm Sci. 2020;151:106274. doi:10.1016/j.ijthermalsci.2020.106274.
- Sarbu I, Dorca A. Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials. Int J Energy Res. 2019;43:29-64. doi:10.1002/er.4196.
- Prasad DS, Singh PK. Thermal charging-discharging analysis of PCM cylinder for amine-functionalized MWCNT-doped paraffin wax as a phase change material. Eng Res Express. 2025;7(1):015001. doi:10.1088/2631-8695/adb127.
- He L, Wang H, Zhu H, Chen C, Zhang J. Thermal properties of PEG/graphene nanoplatelets (GNPs) composite phase change materials with enhanced thermal conductivity and photo-thermal performance. Appl Sci. 2018;8(12):2613. doi:10.3390/app8122613.
- Khezri A, Sahebi M, Mohammadi M. Fabrication and thermal properties of graphene nanoplatelet-enhanced phase change materials based on paraffin encapsulated by melamine–formaldehyde. J Therm Anal Calorim. 2022;147(14):7683-7691. doi:10.1007/s10973-021-11085-7.
- Singh PK, Nagar S, Singh M. Experimental analysis of thermal efficiency of functionalized graphene (COOH) reinforced PCM for thermal energy storage system. IOP Conf Ser Mater Sci Eng. 2021;1116(1):012008. doi:10.1088/1757-899X/1116/1/012008.
- Nair AM, Naidu PVK. Comparison of charging and discharging period analysis of phase change materials-paraffin wax and myristic acid. Int J Curr Eng Technol. 2018;8(1):10886. doi:10.14741/ijcet.v8i01.10886.
- Kanimozhi B, Harish K, Tarun BS, Kumar S. Charging and discharging processes of thermal energy storage system using phase change materials. IOP Conf Ser Mater Sci Eng. 2017;197:012040. doi:10.1088/1757-899X/197/1/012040.
- Liu X, Rao Z. Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material. Thermochim Acta. 2017;647:15-21. doi:10.1016/j.tca.2016.11.010.
- Kumar P, Singh PK, Nagar S. Effect of different concentration of functionalized graphene on charging time reduction in thermal energy storage system. Mater Today Proc. 2021;44:146-152. doi:10.1016/j.matpr.2020.08.548.
- Hosseini SM, Ghaffari M, Kahsari SM, Abbasi A. A study on nano-graphene oxide surface modification for the design of paraffin/graphene oxide phase change material. J Energy Storage. 2024;101:113738. doi:10.1016/j.est.2024.113738.
- Kumar A, Gupta A, Sharma K, Verma N. Effect of graphene oxide on thermal charging and discharging behaviour of paraffin wax as nano-enhanced phase change materials. MRS Adv. 2024;9:1-6. doi:10.1557/s43580-024-00895-0.
- Zhao Q, He F, Zhang Q, Huang J, Wang X. Microencapsulated phase change materials based on graphene Pickering emulsion for light-to-thermal energy conversion and management. Sol Energy Mater Sol Cells. 2019;203:110204. doi:10.1016/j.solmat.2019.110204.
- Hussain A, Abidi IH, Tso CY, Chao CYH. Thermal management of lithium-ion batteries using graphene coated nickel foam saturated with phase change materials. Int J Therm Sci. 2018;124:23-35. doi:10.1016/j.ijthermalsci.2017.09.019.
- Nagar S, Sharma K, Singh M, Gupta V. Charging analysis and characterizations of COOH group functionalized graphene combined with paraffin wax as phase change material for thermal energy storage applications. J Therm Anal Calorim. 2022;149:7505-7516. doi:10.1007/s10973-022-11365-w.
- Viswanathan S, Antony Arockiaraj G, Kalam M, Krishnan V. Enhancement of quick charging and discharging of TES system by PCM mixed with Al2O3 nanoparticles for EV. Therm Sci. 2024;28(1):189-196. doi:10.2298/TSCI221126269V.
- Lin Y, Jia Y, Alva G, Fang G. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sustain Energy Rev. 2018;82:2730-2742. doi:10.1016/j.rser.2017.10.002.
- Kalbande VP, Fating G, Mohan M, Patel A. Experimental and theoretical study for suitability of hybrid nano-enhanced phase change material for thermal energy storage applications. J Energy Storage. 2022;51:104431. doi:10.1016/j.est.2022.104431.
- Etesami M, Nguyen MT, Yonezawa T, Lee JS. 3D carbon nanotubes-graphene hybrids for energy conversion and storage applications. Chem Eng J. 2022;446:137190. doi:10.1016/j.cej.2022.137190.
- Mishra RK, Verma K, Mishra V, Prakash R. A review on carbon-based phase change materials for thermal energy storage. J Energy Storage. 2022;50:104166. doi:10.1016/j.est.2022.104166.
- Putra N, Rawi S, Amin M, Sandi H. Preparation of beeswax/multi-walled carbon nanotubes as novel shape-stable nanocomposite phase-change material for thermal energy storage. J Energy Storage. 2019;21:32-39. doi:10.1016/j.est.2018.11.007.
- Mayilvelnathan V, Arasu AV. Experimental investigation on thermal behavior of graphene dispersed erythritol PCM in a shell and helical tube latent energy storage system. Int J Therm Sci. 2020;155:106446. doi:10.1016/j.ijthermalsci.2020.106446.
Journal of Polymer and Composites
Volume | 13 |
Issue | 05 |
Received | 09/07/2025 |
Accepted | 12/08/2025 |
Published | 28/08/2025 |
Publication Time | 50 Days |
PlumX Metrics