Year : 2025 | Volume : 13 | Special Issue 05 | Page : 418 435
    By

    Vinod Kumar Verma,

  • Kunj Bihari Rana,

  • Brijesh Tripathi,

  1. Assistant Professor, Department of Mechanical Engineering, Government Engineering College,Ajmer, Rajasthan, India
  2. Assistant Professor, Department of Mechanical Engineering, Rajasthan Technical University, Kota, Rajasthan, India
  3. Associate Professor, Department of Mechanical Engineering, Rajasthan Technical University, Kota, Rajasthan, India

Abstract

document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_202457’);});Edit Abstract & Keyword

Composite materials, particularly glass to metal composites, are critical components in solar receiver tubes, where vacuum leakage can significantly compromise the efficiency of solar plants. This research addresses the technical barriers associated with the development of durable and high-quality glass to metal composite seals. We investigate the principles that can enhance the physical and chemical properties of these composite seals, focusing on the incorporation of TiO2 and MgO nanoparticles into boro-silicate glasses with a minor B2O3 content. The transition from muffle furnaces to induction furnaces has markedly improved the controllability of the sealing and peroxidation processes, resulting in a substantial reduction in both pre-oxidation and sealing times. The integration of nanomaterials and modifications to the B2O3 composition have led to a significant enhancement in shear strength of the composite seals. Furthermore, the vacuum leak rates have been reduced to ultra-high vacuum levels, demonstrating the effectiveness of the optimized sealing parameters. Key factors such as surface wettability were refined through adjustments in surface roughness, contact angle, and spreading area. The optimization of strength and leak rates for glass to metal composite joints was achieved by systematically varying input parameters, including material composition, oxidation time, temperature, and the ratios of B2O3, TiO2, and MgO nanomaterials. A comprehensive dataset was generated using a design of experiments approach, specifically the Taguchi L32 method, and the experimental outcomes were analyzed through multiple prediction techniques, including Multiple Regression and Artificial Neural Networks (ANN). The results were subsequently ranked based on precision and error, providing a robust framework for future advancements in glass to metal composite sealing technologies.

Keywords: Composite materials, Glass Metal joints, Nanomaterials, Artificial neural network, Taguchi method, Multiple regression.

[This article belongs to Special Issue under section in Journal of Polymer and Composites (jopc)]

How to cite this article:
Vinod Kumar Verma, Kunj Bihari Rana, Brijesh Tripathi. [226 wpautop=0 striphtml=1]. Journal of Polymer and Composites. 2025; 13(05):418-435.
How to cite this URL:
Vinod Kumar Verma, Kunj Bihari Rana, Brijesh Tripathi. [226 striphtml=1]. Journal of Polymer and Composites. 2025; 13(05):418-435. Available from: https://journals.stmjournals.com/jopc/article=2025/view=0


Browse Figures

document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_202457’);});Edit

References

  1. Palacios A, Barreneche C, Navarro ME, Ding Y. Thermal energy storage technologies for concentrated solar power–A review from a materials perspective. Renew Energy. 2020;156:1244–1265.
  2. Dosta S, Betancor L, Barreneche C. Overview of surface engineering technology to improve the energy efficiency in concentrated solar power (CSP) plants. Sol Energy Mater Sol Cells. 2024;277:113090.
  3. Barriga J, Ruiz-de-Gopegui U, Goikoetxea J, Coto B, Cachafeiro H. Selective coatings for new concepts of parabolic trough collectors. Energy Procedia. 2014;49:30–39. doi:10.1016/j.egypro.2014.03.005
  4. Shokrnia M, Cagnoli M, Grena R, D’Angelo A, Lanchi M, Zanino R. Photo-Thermal Optimization of a Parabolic Trough Collector with Arrayed Selective Coatings. Energies. 2024;17(10):3221.
  5. Donald IW. Review: Preparation, properties, and chemistry of glass and glass-ceramic-to-metal seals and coatings. J Mater Sci. 1993;28(12):2841–2886. doi:10.1007/BF00356382
  6. Dobedoe RS. Glass-ceramic for ceramic/ceramic and ceramic/metal joining applications [Doctoral dissertation]. Department of Physics Centre of Advanced Materials, The University of Warwick; 1997.
  7. Natali M, Carta G, Rigato V, Rossetto G, Salmaso G, Zanella P. Chemical, morphological and nano-mechanical characterizations of Al2O3 thin films deposited by metal organic chemical vapour deposition on AISI 304 stainless steel. Electrochim Acta. 2005;50(25-26):4615–4620.
  8. Bouras N, Madjoubi MA, Kolli M, Benterki S, Hamidouche M. Thermal and mechanical characterization of borosilicate glass. Physica Procedia. 2009;2:1135–1140.
  9. Smedskjaer MM, Mauro JC, Youngman RE, Hogue CL, Potuzak M, Yue Y. Topological principles of borosilicate glass chemistry. J Phys Chem B. 2011;115(43):12930–12946.
  10. Joshi R, Chhibber R. High temperature wettability studies for development of unmatched glass-metal joints in solar receiver tube. Renew Energy. 2018;119:282–289. doi:10.1016/j.renene.2017.12.020
  11. Verma VK, Rana KB, Tripathi B. Research advancements and challenges in the design and fabrication of glass to metal seals for solar receiver tube applications. Int J Environ Sustain Dev. 2021;20:381. doi:10.1504/IJESD.2021.116861
  12. Lv P, Sun Z, Wang F, Yu Y, Yang F, Yue S, Wang T. Cation field-strength effects on ion irradiation-induced mechanical property changes of borosilicate glass structures. J Am Ceram Soc. 2023;106(12):5766–5780.
  13. Lian M, Wang T, Wei C. Effect of B2O3 and Basic Oxides on Network Structure and Chemical Stability of Borosilicate Glass. Ceramics. 2024;7(4):516–529.
  14. Trajanowski GF, Zakraysek L. Alternative method for the evaluation of fused glass to metal seal [Technical Report]. Defense Technical Information Center (DTIC); 1979.
  15. Kuo DW, Leng WB, Shen ZS. Effect of Kovar alloy oxidized in simulated N₂/H₂O atmosphere on its sealing with glass. J Univ Sci Technol Beijing. 2008;15(4):267–273. doi:10.1016/j.just.2008.06.002
  16. Kuo C, Tseng K, Lee Y, Huang H, Chou C. Wetting and spreading behavior of silicate and borosilicate glasses on Kovar alloy. In: Proceedings of the 2012 International Conference on Convergence Information Technology; 2012. Springer.
  17. Cheng CH, Cheng PY. Matched glass to Kovar seal in N₂ and Ar atmospheres. Int J Miner Metall Mater. 2013;20(11):874–880. doi:10.1007/s12613-013-0728-3
  18. Jia H, Bai J, Ao C, Lin T, Deng W, Li H, Xiong D. Experimental investigations on B2O3-Al2O3-SiO2 glass-ceramics with different K2O/Na2O ratios for sealing to Kovar alloy. Mater Today Commun. 2024;40:109911.
  19. Oliver JP, Huh C, Mason SG. An experimental study of some effects of solid surface roughness on wetting. Colloids Surf. 1980;1(1-2):79–104. doi:10.1016/0166-6622(80)80010-0
  20. Ramon-Torregrosa PJ, Rodriguez-Valverde MA, Amirfazli A, Cabrerizo-Vilchez MA. Factors affecting the measurement of roughness factor of surfaces and its implications for wetting studies. Colloids Surf A Physicochem Eng Asp. 2008;323(1):83–93. doi:10.1016/j.colsurfa.2007.12.014
  21. Kubiak KJ, Mathia TG, Wilson MCT. Methodology for metrology of wettability versus roughness of engineering surfaces. In: Proceedings of the 14th International Congress of Metrology; 2009. p. 1–6.
  22. Joshi R, Chhibber R. Effect of surface roughness and oxidation conditions on wettability of borosilicate glass sealant. Mater Sci Forum. 2017;909:61–66. doi:10.4028/www.scientific.net/MSF.909.61
  23. Kwinda TI, Enke D, Koppka S. Effect of TiO₂ on microphase development during phase separation and crystallization in Na₂O–B₂O₃–SiO₂ glass system. J Am Ceram Soc. 2022;105(8):3261–3278.
  24. Scholze H. Chemical durability of glasses. J Non-Cryst Solids. 1982;52(1):91–103. doi:10.1016/0022-3093(82)90283-6
  25. Henderson J. The raw materials of early glass production. Oxford J Archaeol. 1985;4(2):267–291. doi:10.1111/j.1468-0092.1985.tb00248.x
  26. Bansal NP, Doremus RH. Handbook of glass properties. Academic Press; 1986.
  27. Sakka S. Preface. J Non-Cryst Solids. 1988;100–viii. doi:10.1016/0022-3093(88)90002-6
  28. Duffy JA, Ingram MD. Optical Properties of Glass. American Ceramic Society; 1991. p. 159–184.
  29. Manning DAC. Raw materials for the glass industry. In: Introduction to Industrial Minerals; 1995. p. 120–140.
  30. Shelby JE. Density of TiO₂-doped vitreous silica. Phys Chem Glasses. 2005;46(6):494–499.
  31. Kothiyal GP, Anathanarayanan A, Tiwari B, Goswami M, Shrikhande VK. Studies on some glasses and glass-ceramics for various applications including seals. Mater Sci Forum. 2008;587–588:162–166. doi:10.4028/www.scientific.net/MSF.587-588.162
  32. Nandi P, Patil AS, Paul B, Sarkar A, Goswami M, Kothiyal GP. Effect of crystallization rate on sealing behavior of BaO-Al₂O₃-B₂O₃-SiO₂-La₂O₃-TiO₂ glass system. Trans Indian Ceram Soc. 2012;71(3):235–238. doi:10.1080/0371750X.2013.772729
  33. Chen J, Zou Q, Zeng F, Wang S, Tang D, Yang H, Zhang T. Tailoring the sealing properties of TiO₂-CaO-SrO-B₂O₃-SiO₂ glass-ceramic seals: Thermal properties, chemical compatibility, and electrical property. J Power Sources. 2013;241:578–582. doi:10.1016/j.jpowsour.2013.04.134
  34. Varshneya AK. Fundamentals of Inorganic Glasses. 1st ed. Elsevier; 2013.
  35. Barton I, Matejec V, Mrazek J, Predoana L, Zaharescu M. Optical properties of Na₂O-TiO₂-SiO₂ glass films prepared by the sol-gel method. In: Proceedings of the Photonics, Devices, and Systems VII. SPIE; 2017. p. 170–6.
  36. Brückner R. Metastable equilibrium density of hydroxyl-free synthetic vitreous silica. J Non-Cryst Solids. 1971;5(3):281–285. doi:10.1016/0022-3093(71)90068-8
  37. Wright TL. Origin of Hawaiian tholeiite: a metasomatic model. J Geophys Res Solid Earth. 1984;89(B10):3233–3252.
  38. Lee IH, Shin SH, Foroutan F, Lakhkar NJ, Gong MS, Knowles JC. Effects of magnesium content on the physical, chemical and degradation properties in a MgO-CaO-Na₂O-P₂O₅ glass system. J Non-Cryst Solids. 2013;363:57–63. doi:10.1016/j.jnoncrysol.2012.11.036
  39. Bellucci D, Sola A, Salvatori R, Anesi A, Chiarini L, Cannillo V. Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: Effects on thermal behaviour, mechanical properties and in-vitro bioactivity. Mater Sci Eng C. 2017;72:566–575. doi:10.1016/j.msec.2016.11.110
  40. Sangeetha G, Chandra Sekhar K, Narasimha Chary M, Shareefuddin Md. Influence of magnesium oxide on the physical and spectroscopic properties of manganese doped sodium tetra borate glasses. Optik. 2022;259:168952. doi:10.1016/j.ijleo.2022.168952
  41. Phadke MS, Biswas G, Ketkar SV. Quality Engineering Using Robust Design. Addison-Wesley Publishing Company; 1989.
  42. Montgomery DC, Runger GC, Hubele NF. Engineering Statistics and Quality Control. John Wiley & Sons; 2012.
  43. Draper NR, Smith H. Applied Regression Analysis. John Wiley & Sons; 1998.
  44. Haykin S. Neural Networks and Learning Machines. Prentice Hall; 2009.
  45. Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company; 1989.
  46. Box GEP, Draper NR. Empirical Model-Building and Response Surfaces. John Wiley & Sons; 1987.
  47. Modi MA, Patel TM, Rathod GP. Parametric optimization of single cylinder diesel engine for palm seed oil and diesel blend for brake thermal efficiency using Taguchi method. IOSR J Eng. 2014;4(1):49–54. doi:10.9790/3021-04134954
  48. Telford JK. A brief introduction to design of experiments. Johns Hopkins APL Tech Dig. 2007;27:224–232.
  49. Verma VK, Tripathi B, Rana KB, Chhibber R. Factors affecting the performance of glass–metal seal of solar receiver tubes: A review. Int J Appl Eng Res. 2018;13:81–92.
  50. Win Z, Gakkhar RP, Jain SC, Bhattacharya M. Investigation of diesel engine operating and injection system parameters for low noise, emissions, and fuel consumption using Taguchi methods. Proc Inst Mech Eng D J Automob Eng. 2005;219(10):1237–1251. doi:10.1243/095440705×34865
  51. Sathish Kumar R, Sureshkumar K, Velraj R. Optimization of biodiesel production from Manilkara zapota (L.) seed oil using Taguchi method. Fuel. 2015;140:90–96. doi:10.1016/j.fuel.2014.09.103
  52. Fumo N, Biswas MAR. Regression analysis for prediction of residential energy consumption. Renew Sustain Energy Rev. 2015;47:332–343. doi:10.1016/j.rser.2015.03.035
  53. Elangovan S, Rathinasuriyan C. Modeling and prediction of weld strength in ultrasonic metal welding process using artificial neural network and multiple regression method. Mater Sci Eng Int J. 2018;2(2). doi:10.15406/mseij.2018.02.00032
  54. Mishra A. Artificial intelligence algorithms for the analysis of mechanical property of friction stir welded joints by using python programming. Weld Technol Rev. 2020;92(6):7–16. doi:10.26628/wtr.v92i6.1120
  55. Güneyisi E, Gesoğlu M, Güneyisi E, Mermerdaş K. Assessment of shear capacity of adhesive anchors for structures using neural network based model. Mater Struct. 2015;49(3):1065–1077. doi:10.1617/s11527-015-0558-x
  56. Shen X, Sun C, Wang L. Shear strength and performance of glass-to-metal brazed joints. Adv Mater Res. 2010;118–120:686–690. doi:10.4028/www.scientific.net/amr.118-120.686
  57. Abyaneh HZ. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. J Environ Health Sci Eng. 2014;12(1). doi:10.1186/2052-336x-12-40
  58. Güçlü D, Dursun Ş. Artificial neural network modelling of a large-scale wastewater treatment plant operation. Bioprocess Biosyst Eng. 2010;33(9):1051–1058. doi:10.1007/s00449-010-0430-x
  59. Lawson M, Naemi R, Needham RA, Chockalingam N. Can machine learning predict running kinematics based on upper trunk GPS-based IMU acceleration? A novel method of conducting biomechanical analysis in the field using artificial neural networks. Appl Sci. 2024;14(5):1730. doi:10.3390/app14051730
  60. Zhang L, Liu J, Shen X, Li S, Li W, Xiao X. Response surfaces method and artificial intelligence approaches for modeling the effects of environmental factors on chlorophyll a in isochrysis galbana. Microorganisms. 2023;11(8):1875. doi:10.3390/microorganisms11081875
  61. Bey AE, Laidi M, Yettou A, Hanini S, Ibrir A, Hentabli M, et al. Practical artificial neural network tool for predicting the competitive adsorption of dyes on gemini polymeric nanoarchitecture. Kemija U Ind. 2021;(9-10). doi:10.15255/kui.2020.069
  62. Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996;49(11):1225–1231.
  63. Marinković, VS, Vladimir & Mimovic, Predrag. Factors affecting choice and image of ethnic restaurants in Serbia. British Food Journal. 2015;117. 10.1108/BFJ-09-2014-0313.
  64. Concha NC. Bond strength prediction model of corroded reinforcement in concrete using neural network. Int J GEOMATE. 2019;16(54). doi:10.21660/2019.54.4785
  65. Pazand K, Nobari A. Identification of mechanical properties of adhesive joints using ann. Aircr Eng Aerosp Technol. 2017;89(6):928–935. doi:10.1108/aeat-06-2015-0163
  66. Yan F, Lin Z. New strategy for anchorage reliability assessment of gfrp bars to concrete using hybrid artificial neural network with genetic algorithm. Compos Part B Eng. 2016;92:420–433. doi:10.1016/j.compositesb.2016.02.008
  67. Guan XD, Chen G, Liang WL. The optimization of wire bonding parameters and quality prediction model based on neural network. Adv Mater Res. 2012;542-543:976–980. doi:10.4028/www.scientific.net/amr.542-543.976
  68. Gajewski J, Golewski P, Sadowski T. The use of neural networks in the analysis of dual adhesive single lap joints subjected to uniaxial tensile test. Materials. 2021;14(2):419. doi:10.3390/ma14020419
  69. Mo R. Review of neural network algorithm and its application in reactive distillation. Asian J Chem Sci. 2021;20–29. doi:10.9734/ajocs/2021/v9i319073
  70. Al-Maqaleh BM, Al-Mansoub AA, Al-Badani FN. Forecasting using artificial neural network and statistics models. Int J Educ Manag Eng. 2016;6(3):20–32. doi:10.5815/ijeme.2016.03.03
  71. Ponton, J. W. (2017). Induction Heating: A Guide to the Process and Its Applications. Springer International Publishing.
  72. Zhu, Y., Li, X., Wang, Q., & Shi, D. (2019). Induction heating technology and its applications in metal processing. Journal of Materials Processing Technology, 264, 1-12. https://doi.org/10.1016/j.jmatprotec.2018.08.049
  73. Rudnev, V., Loveless, D., & Cook, R. (2017). Handbook of Induction Heating (2nd ed.). CRC Press. https://doi.org/10.1201/9781315117485
  74. Kang, J., Yoo, J., Kim, H., & Lee, W. (2018). Fabrication of glass-to-metal seals using induction heating and their characteristics. Journal of Materials Processing Technology, 251, 95-103. https://doi.org/10.1016/j.jmatprotec.2017.08.018
  75. Haimbaugh, R. E. (2015). Practical Induction Heat Treating (2nd ed.). ASM International.

Special Issue Subscription Original Research
Volume 13
Special Issue 05
Received 11/11/2024
Accepted 16/12/2024
Published 22/07/2025
Publication Time 253 Days

[last_name]

My IP

PlumX Metrics