Various Methods For Plastic Waste Pyrolysis To Fuels: A Review

Year : 2025 | Volume : 13 | Issue : 04 | Page : 79-93
    By

    Venkatanarayana Pappula,

  • Karre Saisuvan Reddy,

  • Abhishek Reddy,

  • Monishwar Reddy Vardireddy,

  1. Assistant Professor, School of Sciences, Woxsen University, Telangana, India
  2. Junior Scholar, School of Technology, Woxsen University, Telangana, India
  3. Junior Scholar, School of Technology, Woxsen University, Telangana, India
  4. Junior Scholar, School of Technology, Woxsen University, Telangana, India

Abstract

document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_194845’);});Edit Abstract & Keyword

The world’s decreasing oil reserves and increasing energy demands are pushing experts to explore alternative ways of producing premium oils that can replace fossil fuels. Waste-to-energy recovery, which involves converting waste materials into energy, shows great potential for managing waste. Waste plastics, abundant and with a high combustion heat, are attractive for energy conversion. However, the vast use of plastic products, both industrially and domestically, leads to a surge in plastic production and disposal issues, posing environmental threats. Pyrolysis is a highly recommended method to convert plastic into high-quality liquid oil. This thermochemical process decomposes plastic at elevated temperatures in an oxygen-free environment, yielding products such as oil, gas, and char. The resulting oil has a higher energy value than conventional fuels and can be refined for transportation and power generation. This article reviews common plastics, such as polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), high-density polyethylene (HDPE), and low-density polyethylene (LDPE) and how pyrolysis can be used to transform them into oil and electricity. The process not only reduces plastic waste but also provides a sustainable solution for global energy demands. Recent developments in pyrolysis technology, such as thermal and catalytic processes, have shown increased fuel production efficiency and environmental sustainability. The study also highlights how important it is to optimize pyrolysis parameters, including temperature, catalyst type, and reaction duration, in order to improve process efficiency. By combining energy recovery and waste management, pyrolysis offers a scalable, environmentally responsible way to deal with the expanding problem of plastic waste, helping to establish a circular economy. In addition to cutting down on plastic waste, this method generates useful energy resources like gas, oil, and char. It lessens dependency on fossil fuels, promotes sustainable energy sources, and is essential for building a sustainable economy.

Keywords: Plastic waste, Pyrolysis, fuel production, polystyrene (PS), Polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), high density polyethylene (HDPE), low density polyethylene (LDPE).

[This article belongs to Journal of Polymer and Composites ]

aWQ6MjE1MjM4fGZpbGVuYW1lOjRlN2Q2MzUwLWZpLmF2aWZ8c2l6ZTp0aHVtYm5haWw=
How to cite this article:
Venkatanarayana Pappula, Karre Saisuvan Reddy, Abhishek Reddy, Monishwar Reddy Vardireddy. Various Methods For Plastic Waste Pyrolysis To Fuels: A Review. Journal of Polymer and Composites. 2025; 13(04):79-93.
How to cite this URL:
Venkatanarayana Pappula, Karre Saisuvan Reddy, Abhishek Reddy, Monishwar Reddy Vardireddy. Various Methods For Plastic Waste Pyrolysis To Fuels: A Review. Journal of Polymer and Composites. 2025; 13(04):79-93. Available from: https://journals.stmjournals.com/jopc/article=2025/view=0


Browse Figures

document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_194845’);});Edit

References

  1. Dey S, Veerendra, G. T N, Babu P. A, Manoj A. P, Nagarjuna K. Degradation of plastics waste and its effects on biological ecosystems: A scientific analysis and comprehensive review. Biomedical Materials & Devices, 2024; 2(1): 70-112.
  2. Lusher A, Hollman, P, Mendoza-Hill, J. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and aquaculture technical paper, 2017; 615.
  3. Dimitris S, Achilias L. A. Recent advances in the chemical recycling of polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA). Recycl. Trends Perspect, (2014). 3, 64.
  4. Ibrahim, H. A. H. (2020). Introductory chapter: pyrolysis. Recent Advances in Pyrolysis, 1. Parikh, K. (2020). Technical Analysis: Generation of Electricity by Pyrolysis of Plastics in a Canadian Environment. Journal of Energy and Power Engineering, 14, 151-155.
  5. Jawale, R., Umredkar, S., Khode, S., Kumbhare, H., Sharma, B., Deshpande, A., & Dutta, A. (2022, October). Pyrocycling-the technique to generate electricity from plastic waste. In AIP Conference Proceedings (Vol. 2494, No. 1). AIP Publishing.
  6. Hamidi, N., Tebyanian, F., Massoudi, R., & Whitesides, L. (2013). Pyrolysis of household plastic wastes. British Journal of Applied Science & Technology, 3(3), 417-439.
  7. Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977-1984.
  8. Siskind, E. (1990). Market development for recycled high density polyethylene (HDPE) (Doctoral dissertation, Massachusetts Institute of Technology).
  9. Patel, P. N., Parmar, K. G., Nakum, A. N., Patel, M. N., Patel, P. R., Patel, V. R., & Sen, D. J. (2011). Biodegradable polymers: an ecofriendly approach in newer millenium. Asian Journal of Biomedical and Pharmaceutical Sciences, 1(3), 23-39.
  10. Singh, R. K., Ruj, B., Sadhukhan, A. K., & Gupta, P. (2019). Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. Journal of environmental management, 239, 395-406.
  11. Palaniappan, M., Palanisamy, S., Khan, R. et al. Synthesis and suitability characterization of microcrystalline cellulose from Citrus x sinensis sweet orange peel fruit waste-based biomass for polymer composite applications. J Polym Res 31, 105 (2024). https://doi.org/10.1007/s10965-024-03946-0.
  12. Javed, Muhammad Hassan, et al. “Advancing Sustainable Energy: Environmental and Economic Assessment of Plastic Waste Gasification for Syngas and Electricity Generation Using Life Cycle Modeling.” Sustainability3 (2025): 1277.
  13. Biakhmetov, Bauyrzhan, et al. “Transportation and process modelling-assisted techno-economic assessment of resource recovery from non-recycled municipal plastic waste.” Energy Conversion and Management 324 (2025): 119273.
  14. Shen, M., Song, B., Zeng, G., Zhang, Y., Huang, W., Wen, X., & Tang, W. (2020). Are biodegradable plastics a promising solution to solve the global plastic pollution?. Environmental pollution, 263, 114469.
  15. Ogbonna, D. N., & Udotong, I. R. (2021). An Appraisal of the Waste Crisis, Urban Floods and municipal Solid Waste Management in Port Harcourt City, Nigeria. Open Access Journal of Waste Management & Xenobiotics, 4(1), 1-14.
  16. Wythers, M. C. (Ed.). (2011). Advances in materials science research. Nova Science. [15] Bekele, W., Amedie, W., & Salehudres, Z. (2020). Design of Pyrolysis Reactor for Waste Plastic Recycling. Engineering and Applied Sciences, 5(5), 92-97.
  17. Coelho, T. M., Castro, R., & Gobbo Jr, J. A. (2011). PET containers in Brazil: Opportunities and challenges of a logistics model for post-consumer waste recycling. Resources, conservation and recycling, 55(3), 291-299.
  18. Vijayakumar, A., & Sebastian, J. (2018, August). Pyrolysis process to produce fuel from different types of plastic–a review. In IOP conference series: Materials Science and Engineering (Vol. 396, p. 012062). IOP Publishing.
  19. Roslan, S. A. H. (2013). The Effect of Recycled-High Density Polyethylene (hdpe) Mixing Ratio on the Tensile Strength of High Density Polyethylene (hdpe) Polymer (Doctoral dissertation, UMP).
  20. Ahmad, N., Kausar, A., & Muhammad, B. (2016). Perspectives on polyvinyl chloride and carbon nanofiller composite: a review. Polymer-Plastics Technology and Engineering, 55(10), 1076-1098.
  21. Oberoi, S., & Malik, M. (2022). Polyvinyl chloride (PVC), chlorinated polyethylene (CPE), chlorinated polyvinyl chloride (CPVC), chlorosulfonated polyethylene (CSPE), polychloroprene rubber (CR)—Chemistry, applications and ecological impacts—I. Ecological and Health Effects of Building Materials, 33-52.
  22. Yu, J., Sun, L., Ma, C., Qiao, Y., & Yao, H. (2016). Thermal degradation of PVC: A review. Waste management, 48, 300-314.
  23. Kumar, S., Panda, A. K., & Singh, R. K. (2011). A review on tertiary recycling of high-density polyethylene to fuel. Resources, Conservation and Recycling, 55(11), 893-910.
  24. Allahvaisi, S. (2012). Polypropylene in the industry of food packaging. Polypropylene, 3-22.
  25. Bronchud Molina, V. (2021). Production of carbon fiber and polypropylene tapes transformed by heat compression moulding (Bachelor’s thesis, Universitat Politècnica de Catalunya).
  26. Birley, A. W. (2012). Plastics materials: properties and applications. Springer Science & Business Media.
  27. Al Mahmood, M. A. (2021). Microrecycling of multi-layered waste packaging to produce value-added Aluminium (Doctoral dissertation, UNSW Sydney).
  28. Khandal, R. K. (2008). Synthetic Polymers and Dyes.
  29. Araujo, F. P., Honorio, L. M. C., Viana, B. C., Silva-Filho, E. C., Silva, F. W., Furtini, M. B., … & Osajima, J. A. (2020). Understanding the role of dye in colorful thermoplastic film under visible light. Journal of Polymer Research, 27, 1-9.
  30. Chaukura, N., Gwenzi, W., Bunhu, T., Ruziwa, D. T., & Pumure, I. (2016). Potential uses and value-added products derived from waste polystyrene in developing countries: A review. Resources, Conservation and Recycling, 107, 157-165.
  31. Maafa, I. M. (2021). Pyrolysis of polystyrene waste: A review. Polymers, 13(2), 225.
  32. Eze, W. U., Umunakwe, R., Obasi, H. C., Ugbaja, M. I., Uche, C. C., & Madufor, I. C. (2021). Plastics waste management: A review of pyrolysis technology. Clean Technol. Recycl, 1(1), 50-69.
  33. Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value-added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248.
  34. Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., & Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of environmental management, 197, 177-198.
  35. Lombardi, L., Carnevale, E., & Corti, A. (2015). A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste management, 37, 26-44.
  36. Vamvuka, D. (2011). Bio‐oil, solid and gaseous biofuels from biomass pyrolysis processes—an overview. International journal of energy research, 35(10), 835-862.
  37. Hasan, M. M., Rasul, M. G., Khan, M. M. K., Ashwath, N., & Jahirul, M. I. (2021). Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments. Renewable and Sustainable Energy Reviews, 145, 111073.
  38. Kabeyi, M. J. B., & Olanrewaju, O. A. (2023). Review and design overview of plastic waste-to-pyrolysis oil conversion with implications on the energy transition. Journal of Energy, 2023.
  39. Maqsood, T., Dai, J., Zhang, Y., Guang, M., & Li, B. (2021). Pyrolysis of plastic species: A review of resources and products. Journal of analytical and applied pyrolysis, 159, 105295.
  40. Adeniyi, A. G., Iwuozor, K. O., Emenike, E. C., Ajala, O. J., Ogunniyi, S., & Muritala, K. B. (2024). Thermochemical co-conversion of biomass-plastic waste to biochar: A review. Green Chemical Engineering, 5(1), 31-49.
  41. Carpenter, D., Westover, T. L., Czernik, S., & Jablonski, W. (2014). Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chemistry, 16(2), 384-406.
  42. Lu, Q., Li, W. Z., & Zhu, X. F. (2009). Overview of fuel properties of biomass fast pyrolysis oils. Energy conversion and management, 50(5), 1376-1383.
  43. Bernardo, C. A., Simões, C. L., & Pinto, L. M. C. (2016, October). Environmental and economic life cycle analysis of plastic waste management options. A review. In AIP conference proceedings (Vol. 1779, No. 1). AIP Publishing.
  44. Al-Rumaihi, A., Shahbaz, M., Mckay, G., Mackey, H., & Al-Ansari, T. (2022). A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renewable and Sustainable Energy Reviews, 167, 112715.
  45. Kabeyi, M. J. B., & Olanrewaju, O. A. (2023). Review and Design Overview of Plastic Waste‐to‐Pyrolysis Oil Conversion with Implications on the Energy Transition. Journal of Energy, 2023(1), 1821129.
  46. Eze, W. U., Umunakwe, R., Obasi, H. C., Ugbaja, M. I., Uche, C. C., & Madufor, I. C. (2021). Plastics waste management: A review of pyrolysis technology. Clean Technol. Recycl, 1(1), 50-69.
  47. Al-Rumaihi, A., Shahbaz, M., Mckay, G., Mackey, H., & Al-Ansari, T. (2022). A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renewable and Sustainable Energy Reviews, 167, 112715.
  48. Singh, J. (2017). A review paper on pyrolysis process of waste tyre. International journal of applied research, 13, 258-262.
  49. Bujak, J. W. (2015). Thermal utilization (treatment) of plastic waste. Energy, 90, 1468-1477.
  50. Kabeyi, M. J. B., & Olanrewaju, O. A. (2023). Review and Design Overview of Plastic Waste‐to‐Pyrolysis Oil Conversion with Implications on the Energy Transition. Journal of Energy, 2023(1), 1821129.
  51. Mia, M., Islam, A., Rubel, R. I., & Islam, M. R. (2017). Fractional distillation & characterization of tire derived pyrolysis oil. International Journal of Engineering Technologies IJET, 3(1), 1-10.
  52. Harussani, M. M., Sapuan, S. M., Rashid, U., Khalina, A., & Ilyas, R. A. (2022). Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Science of The Total Environment, 803, 149911.
  53. Sumesh, K. R., et al. “Mechanical, morphological and wear resistance of natural fiber/glass fiber-based polymer composites.” BioResources 19.2 (2024): 3271-3289.
  54. Paucar-Sánchez, Marco Favio, et al. “Characterization of liquid fraction obtained from pyrolysis of post-consumer mixed plastic waste: A comparing between measured and calculated parameters.” Process Safety and Environmental Protection 159 (2022): 1053-1063.
  55. Cubillos, Andrea, et al. “Advancements in Waste Plastic Pyrolysis: Electrification of the Furnace and Non-Condensable Gas Management.” Available at SSRN 5123676.
  56. Chen, Bo, et al. “Pyrolysis Depolymerization of Waste Macromolecules.” Depolymerization: Concept, Progress, and Challenges Volume 1: Core Concepts and Fundamentals. American Chemical Society, 2025. 197-210.
  57. Deng, Jiaqi, et al. “Co-pyrolysis of biomass and plastic waste into carbon materials with environmental applications: a critical review.” Green Chemistry (2025).
  58. Ghodke, P. K., Sharma, A. K., Moorthy, K., Chen, W. H., Patel, A., & Matsakas, L. (2022). Experimental investigation on pyrolysis of domestic plastic wastes for fuel grade hydrocarbons. Processes, 11(1), 71.
  59. Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy conversion and management, 115, 308-326.
  60. Leme, M. M. V., Venturini, O. J., Lora, E. E. S., Rocha, M. H., Luz, F. C., de Almeida, W., & de Moura, L. F. (2018). Electricity generation from pyrolysis gas produced in charcoal manufacture: Technical and economic analysis. Journal of Cleaner Production, 194, 219-242.
  61. Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2017). Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Conversion and Management, 148, 925-934.
  62. Abdy, C., Zhang, Y., Wang, J., Yang, Y., Artamendi, I., & Allen, B. (2022). Pyrolysis of polyolefin plastic waste and potential applications in asphalt road construction: A technical review. Resources, conservation and recycling, 180, 106213.
  63. Vijayakumar, A., & Sebastian, J. (2018, August). Pyrolysis process to produce fuel from different types of plastic–a review. In IOP conference series: Materials Science and Engineering (Vol. 396, p. 012062). IOP Publishing.
  64. Karuppiah, Ganesan, et al. “Multiobjective optimization of fabrication parameters of jute fiber/polyester composites with egg shell powder and nanoclay filler.” Molecules 23 (2020): 5579.
  65. Palanisamy, Sivasubramanian, et al. “Mechanical properties of phormium tenax reinforced natural rubber composites.” Fibers2 (2021): 11.
  66. Palanisamy, Sivasubramanian, et al. “Tailoring epoxy composites with Acacia caesia bark fibers: Evaluating the effects of fiber amount and length on material characteristics.” Fibers7 (2023): 63.
  67. Koumpakis, Dimitrios-Aristotelis, et al. “Evaluating Plastic Waste Management Strategies: Logistic Regression Insights on Pyrolysis vs. Recycling.” Recycling 10.2 (2025): 33.
  68. Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., Ismail, I. M. I., & Nizami, A. S. (2017). Effect of plastic waste types on pyrolysis liquid oil. International biodeterioration & biodegradation, 119, 239-252.
  69. Daubeny, R. D. P., Bunn, C. W., & Brown, C. J. (1954). The crystal structure of polyethylene terephthalate. Proceedings of the royal society of London. Series A. Mathematical and Physical Sciences, 226(1167), 531-542.
  70. Jabarin, S. A., & Lofgren, E. A. (1994). Photooxidative effects on properties and structure of high‐density polyethylene. Journal of Applied Polymer Science, 53(4), 411-423.
  71. Winkler, D. E. (1959). Mechanism of polyvinyl chloride degradation and stabilization. Journal of Polymer Science, 35(128), 3-16.

Regular Issue Subscription Review Article
Volume 13
Issue 04
Received 25/03/2025
Accepted 24/05/2025
Published 11/06/2025
Publication Time 78 Days

[last_name]

My IP

PlumX Metrics