P. Saravana Kumar,
Bipin Kumar Srivastava,
Dhivakar Poosapadi,
Sasikumar G,
Mayilvani K,
Nellore Manoj Kumar,
S. Arunprasad,
Binu Sukumar,
K. S. Babulal,
- Assistant Professor, Department of Mechanical Engineering, University College of Engineering Arni, Thatchur, Tamil Nadu, India
- Professor, Department of Applied Sciences, Galgotias College of Engineering and Technology, Greater Noida, Uttar Pradesh, India
- Lead Engineer, Quest Global Services, Bengaluru, Karnataka, India
- Assistant Professor, Department of Chemistry, St. Joseph’s College of Engineering, Chennai, Tamil Nadu, India
- Assistant Professor, Department of Chemistry, S.A. Engineering College, Thiruverkadu, Tamil Nadu, India
- Adjunct Faculty, Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
- Associate Professor, Department of Mechanical Engineering, Sri Sai Ram Engineering College, Chennai, Tamil Nadu, India
- Professor, Department of Civil Engineering, R.M.K. Engineering college, Kavaraipettai, Tamil Nadu, India
- Assistant Professor, Manufacturing Engineering Chair, School of Mechanical and Industrial Engineering, Dire Dawa Institute of Technology, Dire Dawa University, , Ethiopia
Abstract
This study presents the advancement and behaviour analysis of sustainable nanocomposites reinforced with cellulose nanocrystals (CNCs), a biodegradable and high-aspect-ratio nanofiller derived from microcrystalline cellulose. CNCs were incorporated into a bisphenol-A-based epoxy matrix at varying concentrations (0, 1, 3, 5, and 7 wt%) to assess their influence on mechanical, thermal, and viscoelastic properties. The tensile strength of the composites increased significantly, from 45 MPa for neat epoxy to 65 MPa at 5 wt% CNC, while Young’s modulus showed an improvement from 1.8 GPa to 3.0 GPa. Thermogravimetric analysis revealed an enhancement in thermal behaviourthat is attributed to the barrier effect of CNC-derived char layers. Dynamic mechanical analysis showed a rise in glass transition (Tg) from 118 °C to 124 °C and a 50% increase in storage modulus, indicating reduced chain mobility and enhanced stiffness under dynamic loading. However, a marginal drop in all properties was observed at 7 wt% CNC due to particle agglomeration and interfacial inefficiencies. These findings suggest that CNCs can be effectively utilized as green reinforcements in thermosetting polymers, with 5 wt% CNC loading offering the most favorable balance between mechanical strength, thermal resistance, and processing feasibility, making them promising candidates for lightweight, eco-friendly applications in aerospace, automotive, and electronic sectors.
Keywords: Cellulose nanocrystals, epoxy nanocomposites, mechanical reinforcement, thermal stability, sustainable materials.
[This article belongs to Journal of Polymer and Composites ]
P. Saravana Kumar, Bipin Kumar Srivastava, Dhivakar Poosapadi, Sasikumar G, Mayilvani K, Nellore Manoj Kumar, S. Arunprasad, Binu Sukumar, K. S. Babulal. Sustainable Epoxy Composites Enhanced by Cellulose Nanocrystals for Structural and Thermal Applications. Journal of Polymer and Composites. 2025; 13(03):126-134.
P. Saravana Kumar, Bipin Kumar Srivastava, Dhivakar Poosapadi, Sasikumar G, Mayilvani K, Nellore Manoj Kumar, S. Arunprasad, Binu Sukumar, K. S. Babulal. Sustainable Epoxy Composites Enhanced by Cellulose Nanocrystals for Structural and Thermal Applications. Journal of Polymer and Composites. 2025; 13(03):126-134. Available from: https://journals.stmjournals.com/jopc/article=2025/view=210188
Browse Figures
References
- Shubhra QTH, Alam AKMM, Quaiyyum MA. Mechanical properties of polypropylene composites: A review. J Reinf Plast Compos. 2013;32(15):1134–50.
- Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem Soc Rev. 2010;39(4):1519–40.
- Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem Soc Rev. 2011;40(7):3941–94.
- Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, et al. Nanocelluloses: A new family of nature-based materials. Angew Chem Int Ed. 2011;50(24):5438–66.
- Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J. 2014;59:302–25.
- Mariano M, El Kissi N, Dufresne A. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. J Polym Sci B Polym Phys. 2016;54(9):830–56.
- Tang C, Saito T, Heinze T, Isogai A, Jin H. Individualization of cellulose fibers and surface modification by TEMPO-mediated oxidation: Application to nanocomposites. ACS Macro Lett. 2013;2(7):633–6.
- Trache D, Hussin MH, Haafiz MKM, Thakur VK. Recent progress in cellulose nanocrystals: Sources and production. Nanoscale. 2017;9(5):1763–86.
- Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers. 2010;2(4):728–65.
- Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y. Cellulose nanoparticles: Structure–morphology–rigidity relationships. ACS Sustainable Chem Eng. 2016;4(8):4350–9.
- Oksman K, Mathew AP, Bondeson D, Kvien I. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol. 2006;66(15):2776–84.
- George J, Sabapathi SN. Cellulose nanocrystals: Synthesis, functional properties, and applications. Polym Eng Sci. 2014;54(7):1383–98.
- Ilyas RA, Sapuan SM, Norrrahim MNF, Yasim-Anuar TA, Atiqah A, Nurazzi NM, et al. Nanocellulose reinforced polymer composites: A review. Polymers. 2021;13(11):2315.
- May CA. Epoxy Resins: Chemistry and Technology. 2nd ed. New York: Marcel Dekker Inc.; 1988.
- Lee SM, Cho J, Kim DS. Recent advances in epoxy-based composites for aerospace applications. Prog Polym Sci. 2020;107:101283.
- Monti M, Natali M, Kenny JM, Torre L. Toughening of epoxy-based systems for aerospace applications. Compos B Eng. 2018;132:222–33.
- Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, et al. Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym. 2012;87(2):1596–605.
- Liu L, Yu J, Cheng L, Yang Y. Biodegradability and properties of PLA composites reinforced by nanocellulose. Polymers. 2019;11(5):751.
- Lu P, Hsieh YL. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydr Polym. 2012;87(1):564–73.
- Chauhan S, Ranjan S, Das M. A review on cellulose nanocrystals: Properties and applications. Surf Interfaces. 2020;20:100367.
- Zhang Q, Wang D, Liang J, Gu J. Enhanced thermal stability and flame retardancy of epoxy composites by incorporating polydopamine functionalized cellulose nanocrystals. Carbohydr Polym. 2016;153:276–83.
- Cao X, Dong H, Li CM. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules. 2020;21(2):752–62.
- Wu Y, Xu H, Fan R, Yu D, Chen L, Guo H. Effect of cellulose nanocrystals on the mechanical and thermal properties of epoxy resins. Cellulose. 2018;25(1):113–23.
- Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, et al. Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Int J Biol Macromol. 2017;103:1100–38.
- Nazir MS, Phung BTT, Baloch Z, Shah AH, Javed S, Batool M, et al. Advanced epoxy-based nanocomposites for electrical insulation—Progress, challenges, and prospects. Carbohydr Polym. 2022;275:118696.
- Sharma S, Rawat P, Rana R, Pathania D, Gupta MK. Biodegradable and lightweight nanocellulose-based epoxy composites with improved flame retardancy and mechanical properties. ACS Sustainable Chem Eng. 2021;9(27):9061–73.
- Frone AN, Berlioz S, Chailan JF, Panaitescu DM. Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydr Polym. 2013;91(1):377–84.
- Jonoobi M, Khazaeian A, Tahir PM, Sain M. Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose. 2011;18(4):1085–95.
- Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, et al. Utilization of various lignocellulosic biomass for the production of nanocellulose: A comparative study. Cellulose. 2015;22(2):1075–90.
- Thomas B, Raj MC, Athira KB, Rubiyah MH, Joy J, Moores A, et al. Nanocellulose, a versatile green platform: From biosources to materials and their applications. Chem Rev. 2018;118(24):11575–625.
- Saba N, Paridah MT, Jawaid M. Mechanical properties of kenaf fibre reinforced polymer composite: A review. Constr Build Mater. 2015;76:87–96.
- Kim H, Miura Y, Macosko CW. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater. 2010;22(11):3441–50.
- Wu Q, Meng Y, Cui Y, Chen G, Huang J. Barrier and mechanical properties of nanocomposite films based on cellulose nanocrystals and poly(vinyl alcohol). Ind Crops Prod. 2015;72:834–40.
- Wang L, Zhang W, Zhang L, Xu F. Effects of cellulose nanocrystals on the thermal and mechanical properties of soy protein isolate-based nanocomposites. Ind Crops Prod. 2016;87:70–7.
- Fortunati E, Armentano I, Torre L, Kenny JM. Nanocellulose for packaging applications: The future of bio-nanocomposites. Adv Polym Sci. 2013;256:283–325.
- Liu Z, Sun X. Mechanical and thermal properties of soy protein-based plastic films reinforced by nanocellulose. J Appl Polym Sci. 2010;120(5):2780–7.
- Iotti M, Gregersen ØW, Moe S, Lenes M. Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ. 2011;19(1):137–45.
- Das O, Kim NH, Bhattacharyya D. Biochar as carbonaceous filler for polymer composites: A review. Polymers. 2019;11(5):753.
- Tsuji H, Sugiura K. Poly(L-lactic acid)/cellulose nanocrystal composites: Effect of CNC content on crystallization and mechanical properties. J Appl Polym Sci. 2021;138(4):49671.
- Samani MK, Sain M, Farnood R. Mechanical characterization of nanofibrillated cellulose reinforced polylactic acid. J Appl Polym Sci. 2016;133(10):42968.
- Kamal MR, Khoshkava V. Effect of cellulose nanocrystals (CNCs) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Ind Crops Prod. 2015;65:45–55.
- Aziz T, Farid A, Haq F, Khan A, Ali S, Khan RU, et al. Role of silica-based porous cellulose nanocrystals in improving water absorption and mechanical properties. Environ Res. 2023;222:115253. doi:10.1016/j.envres.2023.115253.
- Ma Y, Zhao W, Xiong J, Liu Y, Chen Y, Zhang J. Hierarchical interfacial construction by grafting cellulose nanocrystals onto carbon fiber for improving the mechanical performance of epoxy composites. Nanomaterials. 2023;13(18):1537. doi:10.3390/nano13181537.
- Wang Y, Li X, Zhang H, Zhao Y, Xu Z, Liu G. Fabrication of well-dispersed cellulose nanocrystal reinforced epoxy composites via dynamic covalent networks. Int J Biol Macromol. 2023;225:125202. doi:10.1016/j.ijbiomac.2023.125202.
- Perrella M, Bifulco A, Aronne A, Carfagna C, Formicola C, Acierno D, et al. Epoxy-based nanocomposites containing sustainable fillers for the realization of speckle patterns for digital image correlation analysis. Sci Rep. 2023;13:6848. doi:10.1038/s41598-023-33810-3.
Journal of Polymer and Composites
Volume | 13 |
Issue | 03 |
Received | 18/04/2025 |
Accepted | 07/05/2025 |
Published | 10/05/2025 |
Publication Time | 22 Days |