Au@Sio2@PVP-DCMD Membranes: A Breakthrough in Heavy Metal Removal and Antibacterial Defense

Year : 2025 | Volume : 13 | Issue : 03 | Page : 13 27
    By

    Sufyana Idrees,

  • Aneeqa Sabah,

  • Mohsin Nazir,

  • Whied ul Hussan Shahzad,

  • Aneela Sabbir,

  • Sahar Tasleem,

  1. PhD Scholar, Department of Physics, Lahore College for Women University, Lahore, , Pakistan
  2. Associate Professor, Department of Physics, Lahore College for Women University, Lahore, , Pakistan
  3. Chairperson, Department of Software Engineering, Lahore College for Women University, Lahore, , Pakistan
  4. PhD Scholar, Department of Industrial biotechnology, Government College University, Lahore, , Pakistan
  5. Associate Professor, Department of Polymer Engineering, Punjab University, Lahore, , Pakistan
  6. PhD Scholar, Department of Physics, Lahore College for Women University, Lahore, , Pakistan

Abstract

This study investigates the development and characterization of multifunctional gold-doped silica (Au@SiO₂) membranes for water distillation and antibacterial applications. The manufacturing process integrated gold nanoparticles into silica matrices using sol-gel techniques. Structural analysis was conducted using SEM (showing uniform pore distribution with an average pore size of 40-50 nm), FTIR (confirming Si-O-Si and Si-Au-Si bonding peaks at 525 cm⁻¹ and 1310 cm⁻¹ respectively), EDX (revealing gold nanoparticle content of 1.5 wt%), and UV-Visible spectroscopy (indicating an optical band gap decrease from 2.6 eV to 1.8 eV). Permeation tests demonstrated a water vapor transport rate of 3.2 kg/m²h, with heavy metal rejection rates exceeding 99.5% for Pb²⁺ and Cd²⁺. Antibacterial efficacy was validated through microbial assays, showing a reduction of bacterial colonies by 98% for K. pneumoniae and 96% for S. aureus. Density functional theory (DFT) calculations showed that doping with gold led to a 1.2 eV reduction in the band gap, a 15% decrease in total stress, increases in elastic modulus and thermal conductivity, a 20% rise in bond energy, and an 18% increase in potential energy. The large ionic radius of gold prevented its incorporation into the silica matrix, as supported by experimental data. These results highlight the potential of (Au@SiO₂) membranes in achieving energy-efficient water distillation and effective antibacterial performance, marking a significant advancement in water purification technology.

Keywords: Au@SiO₂ membranes, saline water separation, heavy metal rejection, material studio (DFT), pathogenic bacteria.

[This article belongs to Journal of Polymer and Composites ]

aWQ6MjA4ODU5fGZpbGVuYW1lOjIwMmE3YzdlLWZpLXBuZy53ZWJwfHNpemU6dGh1bWJuYWls
How to cite this article:
Sufyana Idrees, Aneeqa Sabah, Mohsin Nazir, Whied ul Hussan Shahzad, Aneela Sabbir, Sahar Tasleem. Au@Sio2@PVP-DCMD Membranes: A Breakthrough in Heavy Metal Removal and Antibacterial Defense. Journal of Polymer and Composites. 2025; 13(03):13-27.
How to cite this URL:
Sufyana Idrees, Aneeqa Sabah, Mohsin Nazir, Whied ul Hussan Shahzad, Aneela Sabbir, Sahar Tasleem. Au@Sio2@PVP-DCMD Membranes: A Breakthrough in Heavy Metal Removal and Antibacterial Defense. Journal of Polymer and Composites. 2025; 13(03):13-27. Available from: https://journals.stmjournals.com/jopc/article=2025/view=208866


Browse Figures

References

  1. Damiri F, Andra, S., Kommineni, N., Balu, S. K., Bulusu, R., Boseila, A. A., … & Cavalu, S. . Recent advances in adsorptive nanocomposite membranes for heavy metals ion removal from contaminated water: A comprehensive review. . Materials,. 2022; 15(15), :5392.
  2. Govindarajan PR, Shanmugavel, R., Palanisamy, S., Khan, T., & Ahmed, O. S. Crash-worthiness analysis of hollow hybrid structural tube by aluminum with basalt-bamboo hybrid fiber laminates by roll wrapping method. . BioResources, . 2024;19(2), :3106.
  3. Mubarak S, Byun, H. S., Dhamodharan, D., Divakaran, N., Kumar, P. A., Siddique, A. B., … & Palanisamy, S. Functionalized black phosphorous-based polymer nanocomposites. . In Advances in Functionalized Polymer Nanocomposites. 2024:307-37.
  4. Elma M, Yacou, C., Wang, D. K., Smart, S., & da Costa, J. C. D. . Microporous silica-based membranes for desalination. Water. 2012;4(3):629-49.
  5. Emam HE. Accessibility of green synthesized nanopalladium in water treatment,. Results in Engineering. 2022;15:100500.
  6. Qtaishat M, Rana, D., Khayet, M., & Matsuura, T. Preparation and characterization of novel hydrophobic/hydrophilic polyetherimide composite membranes for desalination by direct contact membrane distillation. . Journal of Membrane Science, . 2009;327(1-2), :264-73.
  7. Praveen Kumar M, Mangalaraja, R. V., Karazhanov, S., de Oliveira, T. F., Sasikumar, M., Murugadoss, G., … & Kumaresan, N. An overview of noble-metal-free nanostructured electrocatalysts for overall water splitting. Materials Technology for the Energy and Environmental Nexus. 2023;1:3-1.
  8. Alex Y, Divakaran, N., Kumar, P. A., Dhamodharan, D., Mubarak, S., Wang, J., … & Srinivasan, P. Computational studies and modeling aspects of functionalized polymer nanocomposites. . Advances in Functionalized Polymer Nanocomposites, . 2024:1001-30.
  9. Jiang Y, Jenjob, R., & Yang, S. G. . Enhanced therapeutic potential of irreversible electroporation under combination with gold-doped mesoporous silica nanoparticles against EMT-6 breast cancer cells. . Biosensors, . 2022;13(1), :41. .
  10. C. Shang LW, J. Xia, S. Zhang, . Macropatterning of microcrumpled nanofiltration membranes by spacer imprinting for low-scaling desalination, . Environ Sci Technol. 2020;54:15527–33.
  11. Zhang Y, Chong, J. Y., Xu, R., & Wang, R. Effective separation of water-DMSO through solvent resistant membrane distillation (SR-MD). . Water Research,. 2021; 197, :117103.
  12. Ismail N, Venault, A., Mikkola, J. P., Bouyer, D., Drioli, E., & Kiadeh, N. T. H. . Investigating the potential of membranes formed by the vapor induced phase separation process. . Journal of Membrane Science, . 2020;597, :117601. .
  13. Lu KJ, Zhao, D., Chen, Y., Chang, J., & Chung, T. S. . Rheologically controlled design of nature-inspired superhydrophobic and self-cleaning membranes for clean water production. . npj Clean Water, . 2020;3(1), :30. .
  14. Kumar P, Mathpal, M. C., Ghosh, S., Inwati, G. K., Maze, J. R., Duvenhage, M. M., … & Swart, H. C. . Plasmonic Au nanoparticles embedded in glass: Study of TOF-SIMS, XPS and its enhanced antimicrobial activities. . Journal of Alloys and Compounds, . 2022;909,:164789.
  15. Mageshwaran V, Sivasubramanian, P., Kumar, P., & Nagaraju, Y. . Antibacterial response of nanostructured chitosan hybrid materials. Chitosan Nanocomposites:. Bionanomechanical Applications,. 2023:161-79.
  16. Lu KJ, Liang, C. Z., Chen, Y., & Chung, T. S. Unlock the secret of air blowing in developing high strength and superhydrophobic membranes for membrane distillation. Desalination, . 2022;527, :115579. .
  17. Zhang Z, Yang, Y., Li, C., & Liu, R. . Porous nanofibrous superhydrophobic membrane with embedded Au nanoparticles for the integration of oil/water separation and catalytic degradation. . Journal of Membrane Science, . 2019;582, :350-7. .
  18. Tian H, Hong, J., Li, C., Qiu, Y., Li, M., Qin, Z., … & Yin, X. . Electrospinning membranes with Au@ carbon dots: Low toxicity and efficient antibacterial photothermal therapy. . Biomaterials Advances, . 2022;142, :213155. .
  19. Liu L, Xiao, Z., Liu, Y., Li, X., Yin, H., Volkov, A., & He, T. . Understanding the fouling/scaling resistance of superhydrophobic/omniphobic membranes in membrane distillation. Desalination, . 2021;499, :114864.
  20. Al-Furaiji M, Arena, J. T., Ren, J., Benes, N., Nijmeijer, A., & McCutcheon, J. R. . Triple-layer nanofiber membranes for treating high salinity brines using direct contact membrane distillation. Membranes, . 2019;9(5), :60. .
  21. Kekeç S, Kürkçüoğlu, G. S., Yeşilel, O. Z., & Şahin, O. Syntheses, crystal structures, spectroscopic and thermal properties of 3D heteronuclear coordination polymers with 4-ethylpyridine and cyanide ligands. . Structural Chemistry,. 2024; 35(4), :1075-83.
  22. Alizadeh M, Dorranian, D., & Sari, A. H. . Comparison of the antimicrobial photocatalytic activities of SiO2 and Au@ SiO2 nanostructures in water decontamination. . Microscopy Research and Technique, . 2024;87(5), :896-907.
  23. Ravi J, Othman, M. H. D., Matsuura, T., Bilad, M. R. I., El-Badawy, T. H., Aziz, F., … & Jaafar, J. . Polymeric membranes for desalination using membrane distillation: A review. . Desalination, . 2020;490, :114530. .
  24. Zunita M, Makertihartha, I. G. B. N., Saputra, F. A., Syaifi, Y. S., & Wenten, I. G. . Metal oxide based antibacterial membrane, In IOP Conference Series:. Materials Science and Engineering2018. p. 012021.
  25. Ielo I, Giacobello, F., Castellano, A., Sfameni, S., Rando, G., & Plutino, M. R. Development of antibacterial and antifouling innovative and eco-sustainable sol–gel based materials: From marine areas protection to healthcare applications. . Gels, . 2021;8(1), :26.
  26. Son HY, Kim, K. R., Lee, J. B., Le Kim, T. H., Jang, J., Kim, S. J., … & Nam, Y. S. . Bioinspired synthesis of mesoporous gold-silica hybrid microspheres as recyclable colloidal SERS substrates. . 2017.
  27. Cho HS, Noh, M. S., Kim, Y. H., Namgung, J., Yoo, K., Shin, M. S., … & Jun, B. H. . Recent Studies on Metal-Embedded Silica Nanoparticles for Biological Applications. . Nanomaterials, . 2024;14(3),: 268.
  28. Darling SB. Perspective: Interfacial materials at the interface of energy and water. . Journal of Applied Physics, . 2018;124(3).
  29. Karanovic D, Hadnadjev-Kostic, M., Vulic, T., Markov, S., Tomic, A., Miljevic, B., & Rajakovic-Ognjanovic, V. Thermal treatment impact on the evolution of active phases in layered double hydroxide-based ZnCr photocatalysts: Photodegradation and antibacterial performance. . Green Processing and Synthesis, . 2024;13(1), :20230269.
  30. Jelmy EJ, Thomas, N., Mathew, D. T., Louis, J., Padmanabhan, N. T., Kumaravel, V., … & Pillai, S. C. . Impact of structure, doping and defect-engineering in 2D materials on CO 2 capture and conversion. Reaction Chemistry & Engineering,. 2021; 6(10), :1701-38. .
  31. Li C, Dong, H., & Cheng, B. . Tip vortices formation and evolution of rotating wings at low Reynolds numbers. . Physics of Fluids,. 2020; 32(2).

Regular Issue Subscription Original Research
Volume 13
Issue 03
Received 20/01/2025
Accepted 08/02/2025
Published 30/03/2025
Publication Time 69 Days



My IP

PlumX Metrics