Open Access
This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.
Tikhon S. Kurkin,
Oleg V. Lebedev,
Evgeny K. Golubev,
Ekaterina P. Tikunova,
Andrey V. Voronenkov,
Alexander N. Ozerin,
- Senior Research Scientist, Department of Polymer Structural Materials, Laboratory of Structure of Polymer Materials, Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences (ISPM RAS), Profsoyuznaya street, Moscow, Russia
- Senior Research Scientist, Department of Polymer Structural Materials, Laboratory of Structure of Polymer Materials, Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences (ISPM RAS), Profsoyuznaya street, Moscow, Russia
- Research Scientist, Department of Polymer Structural Materials, Laboratory of Structure of Polymer Materials, Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences (ISPM RAS), Profsoyuznaya street, Moscow, Russia
- Research Scientist, Department of Polymer Structural Materials, Laboratory of Structure of Polymer Materials, Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences (ISPM RAS), Profsoyuznaya street, Moscow, Russia
- Research Scientist, Department of Polymer Structural Materials, Laboratory of Structure of Polymer Materials, Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences (ISPM RAS), Profsoyuznaya street, Moscow, Russia
- Professor, Department of Polymer Structural Materials, Laboratory of Structure of Polymer Materials, Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences (ISPM RAS), Profsoyuznaya street, Moscow, Russia
Abstract
In this study, oriented nanocomposite gel-spun fibers and solid-state-processed tapes were manufactured and analyzed. The fibers and tapes were produced using a specific type of nascent disentangled ultra-high molecular weight polyethylene (UHMWPE) reactor powder. As the filler, commercially available electrically conductive carbon black (CB) was used. The ultra-high filler content values up to 75 wt.% were achieved for the UHMWPE/CB gel-spun fibers, while the degree of filling was limited (up to 30 wt.%) in the case of the solid-state processing approach. This was attributed to the type of the filler distribution achieved with the both processing methods. The influence of the filler distribution on the composite characteristics in case of the homogeneous filler distribution in the gel-spun fibers and extremely segregated filler distribution in the solid-state tapes was studied. To this end, the resulting composite UHMWPE/CB gel-spun fibers and solid-state processed tapes were characterized using a combination of research techniques, including X-ray diffraction, scanning electron microscopy, mechanical testing, and conductivity measurements. A comparative study of the electrical conductivity of the gel-spun and solid-state-processed UHMWPE/CB composites was conducted for both the unoriented and oriented states of the composite materials. The obtained solid-state processed UHMWPE/CB tapes were characterized by a low filler percolation threshold value of 2.5 wt.%, while the percolation threshold for the composite gel-spun fibers exceeded 15 wt.%. Regardless of the filler distribution type, a notable reduction in electrical conductivity was observed following the orientation drawing of the composites. At the same time, while a notable reduction in the maximum achievable orientation deformation ratio and subsequent tensile strength decline was observed in the case of gel-spun fibers, no impact of the filling on orientation strengthening was detected in the case of solid-state processed tapes.
Keywords: ultra-high molecular weight polyethylene; solid-phase processing; gel-fiber spinning; composites; nanocomposites; mechanical properties; electrical conductivity.
[This article belongs to Journal of Polymer and Composites (jopc)]
Tikhon S. Kurkin, Oleg V. Lebedev, Evgeny K. Golubev, Ekaterina P. Tikunova, Andrey V. Voronenkov, Alexander N. Ozerin. Composite Gel-Fibers and Solid-State-Processed Tapes Based on Disentangled Ultra-High Molecular Weight Polyethylene and Electrically Conductive Carbon Black: a Comparative Study. Journal of Polymer and Composites. 2024; 13(01):151-165.
Tikhon S. Kurkin, Oleg V. Lebedev, Evgeny K. Golubev, Ekaterina P. Tikunova, Andrey V. Voronenkov, Alexander N. Ozerin. Composite Gel-Fibers and Solid-State-Processed Tapes Based on Disentangled Ultra-High Molecular Weight Polyethylene and Electrically Conductive Carbon Black: a Comparative Study. Journal of Polymer and Composites. 2024; 13(01):151-165. Available from: https://journals.stmjournals.com/jopc/article=2024/view=189882
Browse Figures
References
- Pang, H.; Xu, L.; Yan, D.X.; Li, Z.M. Conductive polymer composites with segregated structures. Prog. Polym. Sci. 2014, 39, 1908–1933, doi:10.1016/j.progpolymsci.2014.07.007.
- Lebedev, O. V; Goncharuk, G.P.; Ozerin, A.N. Changes in Electrical Conductance of Polymer Composites Melts Due to Carbon Nanofiller Particles Migration. Polymers (Basel). 2021, 13, 1030, doi:10.3390/polym13071030.
- Alaferdov, A. V; Lebedev, O. V; Roggero, U.F.S.; Hernandez-Figueroa, H.E.; Nista, S.V.G.; Trindade, G.M.; Danilov, Y.A.; Ozerin, A.N.; Moshkalev, S.A. Highly conductive nanographite/ultra-high-molecular-weight polyethylene composite. Results Mater. 2022, 15, 100298, doi:https://doi.org/10.1016/j.rinma.2022.100298.
- Lebedev, O. V.; Ozerin, A.N.; Kechek’yan, A.S.; Shevchenko, V.G.; Kurkin, T.S.; Golubev, E.K.; Karpushkin, E.A.; Sergeyev, V.G.; Kechek’yan, A.S.; Shevchenko, V.G.; et al. A study of oriented conductive composites with segregated network structure obtained via solid‐state processing of UHMWPE reactor powder and carbon nanofillers. Polym. Compos. 2019, 40, E146–E155, doi:10.1002/pc.24532.
- Bouchet, J.; Carrot, C.; Guillet, J.; Boiteux, G.; Seytre, G.; Pineri, M. Conductive composites of UHMWPE and ceramics based on the segregated network concept. Polym. Eng. Sci. 2000, 40, 36–45, doi:10.1002/pen.11137.
- Lebedev, O. V; Tikunova, E.P.; Kurkin, T.S.; Golubev, E.K.; Ozerin, A.N. Nanocomposites Based on Disentangled Ultra-High Molecular Weight Polyethylene: Aspects and Specifics of Solid-State Processing. Polymers (Basel). 2024, 16, 3423, doi:10.3390/polym16233423.
- Al Bawab, A.; Bozeya, A.; Makableh, Y.F.; Khalaf, A.; Abu-Zurayk, R. Enhanced thermal and structural properties of UHMWPE/CNT nanocomposite sheets prepared by using melt compounding technique. Polym. Bull. 2023, 80, 12433–12445, doi:10.1007/s00289-022-04645-w.
- Maruzhenko, O.; Mamunya, Y.; Boiteux, G.; Pusz, S.; Szeluga, U.; Pruvost, S. Improving the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers. Int. J. Heat Mass Transf. 2019, 138, 75–84, doi:https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.043.
- Cheng, H.; Sun, X.; Huang, B.; Xiao, L.; Chen, Q.; Cao, C.; Qian, Q. Endowing Acceptable Mechanical Properties of Segregated Conductive Polymer Composites with Enhanced Filler-Matrix Interfacial Interactions by Incorporating High Specific Surface Area Nanosized Carbon Black. Nanomater. 2021, 11, doi:10.3390/nano11082074.
- Golubev, E.K.; Kurkin, T.S.; Ozerin, A.N. High-strength tapes prepared by the solid-state processing of nascent reactor powders of ultrahigh molecular weight polyethylene. Russ. Chem. Bull. 2023, 72, 749–763, doi:10.1007/s11172-023-3839-3.
- Ozerin, A.N.; Golubev, E.K.; Ivanchev, S.S.; Aulov, V.A.; Kechek’yan, A.S.; Kurkin, T.S.; Ivan’kova, E.M.; Adonin, N.Y. Reactor Powders of Ultra-high Molecular Weight Polyethylene for Solid-state Processing into High-strength Materials and Products. Polym. Sci. Ser. A 2022, 64, 73–83, doi:10.1134/S0965545X22020067.
- Ozerin, A.N.; Ivanchev, S.S.; Chvalun, S.N.; Aulov, V.A.; Ivancheva, N.I.; Bakeev, N.F. Properties of oriented film tapes prepared via solid-state processing of a nascent ultrahigh-molecular-weight polyethylene reactor powder synthesized with a postmetallocene catalyst. Polym. Sci. Ser. A 2012, 54, 950–954, doi:10.1134/S0965545X12100033.
- Lebedev, O. V.; Kechek’yan, A.S.; Shevchenko, V.G.; Kurkin, T.S.; Beshenko, M.A.; Ozerin, A.N. Strengthened electrically conductive composites based on ultra-high-molecular-weight polyethylene filled with fine graphite. Dokl. Chem. 2014, 456, 87–90, doi:10.1134/S0012500814060020.
- Lebedev, O. V.; Ozerin, A.N.; Kechek’yan, A.S.; Golubev, E.K.; Shevchenko, V.G.; Kurkin, T.S.; Beshenko, M.A.; Sergeev, V.G. Strengthened electrically conductive composite materials based on ultra-high-molecular-weight polyethylene reactor powder and nanosized carbon fillers. Nanotechnologies Russ. 2015, 10, 42–52, doi:10.1134/S1995078015010115.
- Guo, Y.; Cao, C.; Cheng, H.; Chen, Q.; Huang, B.; Luo, F.; Qian, Q. Thermal Performances of UHMWPE/BN Composites Obtained from Different Blending Methods. Adv. Polym. Technol. 2019, 2019, 8687450, doi:10.1155/2019/8687450.
- Gao, C.; Lu, H.; Ni, H.; Chen, J. Structure, thermal conductive, dielectric and electrical insulating properties of UHMWPE/BN composites with a segregated structure. J. Polym. Res. 2018, 25, doi:10.1007/s10965-017-1414-1.
- Liu, Z.; Yin, X.; Zhang, H.; Wang, M.; Feng, Y. Efficient preparation of BN/UHMWPE composites with oriented thermal conductivity by powder solid-state extrusion. Compos. Part A Appl. Sci. Manuf. 2023, 172, 107598, doi:https://doi.org/10.1016/j.compositesa.2023.107598.
- Bunsell, A.R. Handbook of Properties of Textile and Technical Fibres; The Textile Institute Book Series; Elsevier Science, 2018; ISBN 9780081018866.
- Schaller, R.; Feldman, K.; Smith, P.; Tervoort, T.A. High-Performance Polyethylene Fibers “Al Dente”: Improved Gel-Spinning of Ultrahigh Molecular Weight Polyethylene Using Vegetable Oils. Macromolecules 2015, 48, 8877–8884, doi:10.1021/acs.macromol.5b02211.
- SATPATHY, U.S.; MAITI, M.; GANDHAM, S.S.R.; Mathur, A.B.; Jasra, R.V.; SHUKLA, D.K.; BAGUI, M.; PATIL, Y.P.; BASAK, G.C.; SHAH, A.K.P.; et al. A compact polymeric gel and a process for preparaing the same 2018.
- Eun, J.H.; Kim, D.H.; Jang, I.U.; Sung, S.M.; Kim, M.S.; Choi, B.K.; Kang, S.W.; Kim, M.S.; Lee, J.S. A study on mechanical properties and thermal properties of UHMWPE/MWCNT composite fiber with MWCNT content and draw ratio. J. Eng. Fiber. Fabr. 2022, 17, 15589250221108484, doi:10.1177/15589250221108484.
- Ruan, S.; Gao, P.; Yu, T.X. Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer (Guildf). 2006, 47, 1604–1611, doi:10.1016/j.polymer.2006.01.020.
- Bin, Y.; Xu, C.; Zhu, D.; Matsuo, M. Electrical properties of polyethylene and carbon black particle blends prepared by gelation/crystallization from solution. Carbon N. Y. 2002, 40, 195–199, doi:https://doi.org/10.1016/S0008-6223(01)00173-7.
- Kornev, A.E.; Ovsyannikov, N.Y. Electrowire and magnetic elastomer materials and multipurpose goods. Fine Chem. Technol. 2009, 4, 3–8.
- Choi, H.-J.; Kim, M.S.; Ahn, D.; Yeo, S.Y.; Lee, S. Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre. Sci. Rep. 2019, 9, 6338, doi:10.1038/s41598-019-42495-1.
- Ivanchev, S.S.; Ruppel’, E.I.; Ozerin, A.N. Optimization of the conditions of ethylene polymerization into reactor powders of ultra-high-molecular-weight polyethylene suitable for solid-phase formation into oriented ultra-high-strength and ultra-high-modulus film yarns. Dokl. Phys. Chem. 2016, 468, 89–92, doi:10.1134/S0012501616060026.
- Zhai, W.; Zhao, S.; Wang, Y.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Segregated conductive polymer composite with synergistically electrical and mechanical properties. Compos. Part A Appl. Sci. Manuf. 2018, 105, 68–77, doi:10.1016/j.compositesa.2017.11.008.
- Ward, I.M.; Sweeney, J. Mechanical Properties of Solid Polymers; 3rd editio.; John Wiley & Sons, Ltd, 2012; ISBN 9781119967125.
Journal of Polymer and Composites
Volume | 13 |
Issue | 01 |
Received | 28/11/2024 |
Accepted | 14/12/2024 |
Published | 17/12/2024 |