Optical Along with Magnetic Properties of Doped Nano-Structured Mos2 Nano-Films by Spin Coating

Open Access

Year : 2025 | Volume :13 | Special Issue : 01 | Page : 297-302
By
vector

Rashmi Singh,

  1. Assistant Professor, Department. of Physics, Institute of Applied Sciences & Humanities IAH, GLA University, Mathura, Uttar Pradesh, India

Abstract

The supernatant containing 2D nano-flakes of Molybdenum di-sulphide (MoS2) are synthesized and collected using wet chemical synthesis process. The dispersed MoS2 nano-flakes solution is having strong absorbance values at 627 nm and 690 nm conforming to an energy band gap BG of 1.79 eV and 1.98 eV. Thereafter, MoS2 thin films with and without magnetic doping (cobalt) are deposited on n type silicon by spin coating technique. These samples are placed in the quartz boat then and annealed in a thermal furnace at 260oC for 40 min in Nitrogen gas environment. The AFM imaging of these samples revealed average lateral dimensions of nano-flakes to be from 100 to 200 nm. The magnetization curves with respect to the applied field for both samples are studied using Vibrating Sample Magnetometer (VSM). The VSM measurements, conducted at room temperature, verified the presence of the magnetic property that was introduced, as well as the hysteresis loop, in the thin films of Cobalt-doped MoS2.

Keywords: MoS2, wet chemical synthesis, thin film deposition, spin coating, optical properties, magnetic properties

[This article belongs to Special Issue under section in Journal of Polymer and Composites (jopc)]

aWQ6MTkzOTk4fGZpbGVuYW1lOjAzODJmOWVkLWZpLXBuZy53ZWJwfHNpemU6dGh1bWJuYWls
How to cite this article:
Rashmi Singh. Optical Along with Magnetic Properties of Doped Nano-Structured Mos2 Nano-Films by Spin Coating. Journal of Polymer and Composites. 2024; 13(01):297-302.
How to cite this URL:
Rashmi Singh. Optical Along with Magnetic Properties of Doped Nano-Structured Mos2 Nano-Films by Spin Coating. Journal of Polymer and Composites. 2024; 13(01):297-302. Available from: https://journals.stmjournals.com/jopc/article=2024/view=188222


Full Text PDF

Browse Figures

References

  1. Gobbi M, Bonacchi S, Lian J X, Vercouter A, Bertolazzi S, Zyska B, Timpel M, Tatti R, Olivier Y, Hecht S, Nardi M V, Beljonne D, Orgiu E, Samori P, Collective Molecular Switching in Hybrid Superlattices for Light-Modulated Two-Dimensional Electronics. Nature Communications, 2018; 9(2661), 1-9.
  2. Singh R, Kimothi S, Singh M V, Rani U, Verma A S, Structural and device fabrication of 2D-MoS2 thin film. Chalcogenide Letters, 2023; 20(8), 573-8.
  3. Zhu Y, Li Y, Arefe G, Burke R A, Tan C, Hao Y, Liu X, Yoo W J, Dubey M, Lin Q, Hone J C, Monolayer Molybdenum Di-sulfide Transistors with Single-Atom-Thick Gates. Nano Letters, 2018; 18(6), 3807–13.
  4. Gao M, Xu Y, Jiang J, Yu S, Nanostructured Metal Chalcogenides: Synthesis, Modification, and Applications in Energy Conversion and Storage Devices. Chemical Society Reviews, 2013; 42 (7), 2986–3017.
  5. Huang X, Zeng Z, Zhang H, Metal Di-chalcogenide Nanosheets: Preparation, Properties and Applications. Chemical Society Reviews, 2013; 42 (5), 1934–46.
  6. Xu B, Cheng Y, Wang Y, Huang Y, Peng J, Luo Z, Xu H, Cai Z, Weng J, Moncorge R, Passively Q-Switched Nd:YAlO3 Nanosecond Laser Using MoS2 as Saturable Absorber. Optics Express, 2014; 22(23), 28934–40.
  7. Voiry, Yamaguchi H, Li J. Silwa R, Alves D C B, Fujita T, Chen M, Asefa T, Shenou V B, Eda G, Chhowalla M, Enhanced Catalytic Activity in Strained Chemically Exfoliated WS2 Nanosheets for Hydrogen Evolution. Nature Materials, 2013, 12 (9), 850–5.
  8. Bromley R, Murray R B, A Semiempirical Tight Binding Method. Journal of Physics C: Solid State Physics, 1972; 5, 738–45.
  9. Mattheiss L F, Band Structures of Transition-Metal-Di-chalcogenide Layer Compounds. Physical Review B, 1973; 8 (8), 3719–40.
  10. Lin Y C, Dumcenco D M, Huang Y, Suenaga K, Atomic Mechanism of the Semiconducting-to-Metallic Phase Transition in Single-Layered MoS Nature Nanotechnology. 2014; 9 (5), 391–6.
  11. Li H, Zhang Q, Yap R, Tay B K, Teo E H , Olivier A, Baillargeat E, From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced Functional Materials, 2012; 22(7), 1385–90.
  12. Reshmi S, Akshaya M V, Satpati B, Basu P K, Bhattacharjee K “Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam. Nanotechnology, 2018; 29(20), 205604.
  13. Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M, Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2. ACS Nano, 2012; 6(8), 7311–7.
  14. Botello-Méndez A R, López-Urías F, Terrones M, Terrones H, Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. Nanotechnology, 2009; 20(32), 325703-6.
  15. Zhang J, Soon J, Loh K P, Yin J, Ding J, Sullivian M B, Wu P, Magnetic molybdenum disulfide nanosheet films. Nano letters, 2007; 7(8), 2370-6.
  16. Yao Y, Tolentino L, Yang Z, Song X, Zhang W, Chen Y, Wong C, High-Concentration Aqueous Dispersions of MoS2. Advanced Functional Materials, 2013; 23(28), 3577-83.
  17. Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O’Neill A, Duesberg D S,  Grunlan J C, Moriarty G, Chen J, Wang J, Minett A I, Nicolosi V, Coleman J N, Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Advanced Materials, 2011; 23(34), 3944-8.
  18. Mak K F, Lee C, Hone J, Shan J, Heinz T F, Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters, 2010; 105(13), 136805-24.
  19. Li H, Wu J, Huang X, Lu G, Yang J, Lu X, Xiong Q, Zhang H, Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano, 2013; 7(11), 10344-53.
  20. Stengl V, Henych J, Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation. Nanoscale, 2013; 5(8), 3387-94.
  21. Wu J Y, Lin M N, Wang L D, Zhang T, Photoluminescence of MoS 2 Prepared by Effective Grinding-Assisted Sonication Exfoliation. Journal of Nanomaterials, 2014; 2014 (1) 852735.
  22. Li Y, Zhou Z, Zhang S, Chen Z, MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. Journal of the American Chemical Society, 2008;130(49), 16739–44.
  23. Terrones M, Botello-Mndez A R, Lopez-Uras F, Terrones H, Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. Nanotechnology, 2009; 20(32), 325703.
  24. Shidpour R, Manteghian M, A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy. Nanoscale, 2010; 2, 1429-35.
  25. Zhang J, Soon J M, Loh K P, Yin J, Ding J, Sullivian M B, Wu P, Magnetic molybdenum disulfide nanosheet films. Nano Letters, 2007; 7(8), 2370-6.
  26. Coey J M D, d0 Ferromagnetism. Solid State Sciences, 2005; 7(6), 660-7.
  27. Zhang Z, Zou X, Crespi V H, Yakobson B I, Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano, 2013; 7(12), 10475-81.
  28. Wang J, Sun F, Yeng S, Li Y, Zhao C, Xu M, Zhang Y, Zeng H, Robust ferromagnetism in Mn-doped MoS2 Applied Physics Letters, 2016; 109(9), 092401-9.
  29. Park C S, Chu D, Shon Y, Lee J, Kim E K, Room temperature ferromagnetic and ambipolar behaviors of MoS2 doped by manganese oxide using an electrochemical method. Applied Physics Letters, 2017; 110(22), 222104-13.

Special Issue Open Access Original Research
Volume 13
Special Issue 01
Received 19/04/2024
Accepted 14/05/2024
Published 08/11/2024