Open Access
Monika Goyal,
- Professor, Department of Physics, IAH, GLA University, Mathura, Uttar Pradesh, India
Abstract
It is necessary to consider defects to explain the electron movement, thermal transport and mechanical properties of materials. In the present study, a simple quantitative model for cohesive energy of nanoparticles is extended to determine the size, shape and crystal structure effect on vacancy formation energy, vacancy entropy, and vibrational frequency in free surface Au nanoparticles. Vacancy entropy variation with size has been studied for spherical, regular octahedral, regular hexahedral and regular tetrahedral Au nanoparticles (NP’s). The computed results depict the drop in entropy with respect to size is maximum in regular tetrahedral NP’s and least in spherical Au NP’s. It is found from model results that vibrational frequency decrease with decrease in diameter of the nanoparticles and reduction is different for different shapes as surface atoms to volume ratio changes. The consistency of present obtained results with the results from other theoretical models supports the present formulation and predicts well the effect of size and shape on the physio-chemical properties in nanomaterials.
Keywords: Melting temperature; vacancy formation energy; vacancy entropy; size; shape parameter.
[This article belongs to Special Issue under section in Journal of Polymer and Composites (jopc)]
Monika Goyal. Impact of Shape, Size and Crystal Structure on Vacancy Related Properties of Gold Nanoparticles. Journal of Polymer and Composites. 2024; 13(01):223-229.
Monika Goyal. Impact of Shape, Size and Crystal Structure on Vacancy Related Properties of Gold Nanoparticles. Journal of Polymer and Composites. 2024; 13(01):223-229. Available from: https://journals.stmjournals.com/jopc/article=2024/view=188207
Browse Figures
References
- Richman EK, Hutchison JE. The nanomaterial characterization bottleneck. ACS Nano. 2009; 3(9): 2441-6p. doi: 10.1021/nn901112p.
- Yeo YH, Oh TS. Thermoelectric properties of p-type (Bi,Sb)2Te3 nanocomposites dispersed with multiwall carbon nanotubes. Res. Bull. 2014; 58:54-5p. doi: 10.1016/j.materresbull.2014.04.046.
3. Roduner E. Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006; 35(7): 583-10p. doi:10.1039/B502142C.
4. Goyal M, Gupta BRK. Shape and size dependent thermophysical properties of nanocrystals. Chinese J. Physics. 2018; 56 (1):282-10p.
- Safaei A. Cohesive energy and physical properties of nanocrystals. Philosophical magazine. 2011; 91: 1509-31p.doi:1080/14786435.2010.548836.
6. Jiang Q, Zhang SH, Li JC. Grain size-dependent diffusion activation energy in nanomaterials. Solid stat. Commun. 2004; 130 (9): 581-5p. doi: 10.1016/j.ssc.2004.03.033
7. Goyal M, Goyal V. Effect of size and temperature on vacancy concentration in nanomaterials, Pramana J. Phys, 2021; 95 (3): 99. 10.1007/s12043-021-02127-8
8. Agullo-Lopez F, Catlow CRA, Townsed PD. Point defects in materials (Academic Press, London 1988: 445 p.
9. Muller M, Albe K. Concentration of thermal vacancies in metallic nanoparticles. Acta Materialia. 2007; 55 (9): 3237-8p.
- Gladkikh NT, Kryshtal OP. On the size dependence of the vacancy formation energy. Funct. Mater. 1999;6 (5): 823-5p.
- Qi W. Size- and coherence-dependent thermodynamic properties of metallic nanowires and nanofilms. Modern Physics Letters B. 2006; 9 (20): 1943-9p. Doi:10.1142/S0217984906012092.
- Ouyang G, Zhu WG, Yang GW, Zhu ZM. Vacancy Formation Energy in Metallic Nanoparticles under High Temperature and High Pressure. Phys. Chem. C. 2010; 114 (11): 4929-5p. DOI: 10.1021/jp100583n.
- Qi WH, Wang MP, Zhou M, Hu WY. Surface-area-difference model for thermodynamic properties of metallic nanocrystals. J. Phys. D. Appl. Phys. 2005; 38 (9): 1429.doi:10.1088/0022-3727/38/9/016.
- Guisbiers G. Schottky Defects in Nanoparticles. The J. of Physical Chemistry C. 2011; 115 (6): 2616-6p. doi:10.1021/jp108041q.
- Qi WH, Wang MP. Size and shape dependent melting temperature of metallic nanoparticles. Material chem. & Phys. 2004; 88(2-3): 280-5p. doi:1016/j.matchemphys.2004.04.026
- Qi WH, Wang MP, Liu QH. Shape factor of nonspherical nanoparticles. Journal of material science. 2005; 40: 2737-3p.doi:1007/s10853-005-2119-0.
- Shanker J, Kumar M. Studies on Melting of Alkali Halides. Phys. Status. Solidi. B. 1990; 158 (1990) 11.doi:1002/pssb.2221580102.
- Lindemann F A. The calculation of molecular vibration frequencies. Z. 1910; 11: 609-4p.
- Dash JG. History of the search for continuous melting. Mod. Phys.1999; 71:1737. doi:10.1103/RevModPhys.71.1737
20. Guisbiers G, Buchaillot L. Universal size/shape-dependent law for characteristic temperatures. Phys. Lett. A. 2009; 374 (2): 305-4p. doi: 10.1016/j.physleta.2009.10.054
- Guisbiers G. Size-dependent Materials Properties Toward a Universal Equation. Nano Res. Lett. 2010; 5 :1132. https://dx.doi.org/10.1007%2Fs11671-010-9614-1
- Kittel C. Introduction to Solid State Physics, 7 th Edition, John Wiley & sons, New York, 1996.
- Regel AR, Glazov VM. Entropy of melting of semiconductors. Semiconductors. 1995; 29: 405.
- Skordas ES. On a universal relation for defect data in solids. B. 2010; 405 (20): 4320-3p. DOI: 10.1016/j.physb.2010.07.034.
- Bollmann W, Uvarov NF, Hairetdinov EF. Estimation of point defect parameters of solids on the basis of a defect formation model of melting (II). Vacancy formation enthalpy in relation to the heat of fusion and the increase of volume due to melting. Crystal Res. Technol. 1989; 24 (1989) 421.doi:1002/crat.2170240418.
- Wautelet M. Estimation of the variation of the melting temperature with the size of small particles, on the basis of a surface-phonon instability model. J. Phys. D.: Appl. Phys. 1991; 24 (3): 343. doi:1088/0022-3727/24/3/017.
27. Yang CC, Li S. Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals. Phys. Rev. B. 2007; 75 (16):165413. doi:10.1103/PhysRevB.75.165413.
28. Kraftmakher Y. Equilibrium vacancies and thermophysical properties of metals. Phys. Rep. 1998; 299(2-3): 79-110 p.doi:10.1016/S0370-1573(97)00082-3
Journal of Polymer and Composites
Volume | 13 |
Special Issue | 01 |
Received | 11/03/2024 |
Accepted | 23/04/2024 |
Published | 08/11/2024 |