Investigation of Electronic Transport in Li2O and ZnO Nanoparticles Containing Polypyrrole Systems

Open Access

Year : 2024 | Volume : 12 | Special Issue 06 | Page : 88 95
    By

    Rajshekar. L. Madival,

  • Suresh Patnaik Pakki,

  • B. Simhachalam,

  • Prashantkumar. M,

  • Vinay. V. Kannur,

  • N. Nagaraja,

  • Y. T. Ravikiran,

  • V. Harshavardhan,

  • S. K. Alla,

  1. Assistant Professor, Department of Physics, Rao Bahadur Y Mahabales warappa Engineering College, Ballari, Karnataka, India
  2. Assistant Professor, Department of Physics, Aditya Institute of Technology and Management, K Kotturu, Tekkali, Srikakulam, Andhra Pradesh, India
  3. Assistant Professor, Department of Physics, Surya Teja Degree College, Kasibugga, Palasa, Andhra Pradesh, India
  4. Associate Professor, Department of PG Studies and Research in Physics, Government College (Autonomous), Kalaburagi, Karnataka, India
  5. Assistant Professor, Department of Physics, Rao Bahadur Y Mahabaleswarappa Engineering College, Ballari, Karnataka, India
  6. Assistant Professor, Department of Physics, Rao Bahadur Y Mahabaleswarappa Engineering College, Ballari, Karnataka, India
  7. Associate Professor, Department of PG Studies and Research in Physics, Government First grade College, Holalkere, Karnataka, India
  8. Associate Professor, Department of Physics, CMR Technical Campus, Hyderabad, Telangana, India
  9. Associate Professor, Department of Physics, Aditya Institute of Technology and Management, K Kotturu, Tekkali, Srikakulam, Andhra Pradesh, India

Abstract

Polypyrrole systems having nanocrystalline ZnO and Li2O with different compositions (PPy50 + Li2Ox + ZnO(50-x), where x = 0, 2, 4, 6, 8, and 10) have been produced by ball milling. compositions of the type The temperature-dependent DC conductivity of each sample was determined in the temperature range of 313 K to 363 K. The conductivity studies show that Polaron hopping was the conducting mechanism in the material composites. The weight proportion of Li2Ox + ZnO (50-x) NPs was discovered to increase the conductivity and activation energy of the PPy, indicating that the hopping distance between the charged particles is reduced, improving the metallic character and charge carrier particle density.  

Keywords: Polypyrrole, composites, nanoparticles, dc conductivity.

[This article belongs to Special Issue under section in Journal of Polymer and Composites (jopc)]

aWQ6MTg3MDA3fGZpbGVuYW1lOjdlYzZjYTVmLWZpLXBuZy53ZWJwfHNpemU6dGh1bWJuYWls
How to cite this article:
Rajshekar. L. Madival, Suresh Patnaik Pakki, B. Simhachalam, Prashantkumar. M, Vinay. V. Kannur, N. Nagaraja, Y. T. Ravikiran, V. Harshavardhan, S. K. Alla. Investigation of Electronic Transport in Li2O and ZnO Nanoparticles Containing Polypyrrole Systems. Journal of Polymer and Composites. 2024; 12(06):88-95.
How to cite this URL:
Rajshekar. L. Madival, Suresh Patnaik Pakki, B. Simhachalam, Prashantkumar. M, Vinay. V. Kannur, N. Nagaraja, Y. T. Ravikiran, V. Harshavardhan, S. K. Alla. Investigation of Electronic Transport in Li2O and ZnO Nanoparticles Containing Polypyrrole Systems. Journal of Polymer and Composites. 2024; 12(06):88-95. Available from: https://journals.stmjournals.com/jopc/article=2024/view=187017


Browse Figures

References

  1. Fatima T, Sankarappa T, Ashwajeet JS, Ramanna R. Structural and dielectric properties of PPy/ZnO composites. Int. J. Innov. Res. Sci. Eng. Technol. 2015; 2:206-13.
  2. El-Gamal S, Ismail AM, El-Mallawany R. Dielectric and nano-scale free volume properties of polyaniline/polyvinyl alcohol nanocomposites. Journal of Materials Science: Materials in Electronics. 2015;26(10):7544-53.
  3. Suhailath K, Ramesan MT. Temperature dependent AC conductivity, mechanical and different DC conductivity modeling of poly (butyl methacrylate)/samarium doped titanium dioxide nanocomposites. Journal of Materials Science: Materials in Electronics. 2017; 28:13797-805.
  4. Friberg L, Nordberg GF, Vouk VB. Handbook on the Toxicology of Metals. Elsevier/North-Holland Biomedical Press, 335, The Netherlands; 1979.
  5. Ratkovich A, Penn RL. Zinc oxide nanoparticle growth from homogenous solution: influence of Zn: OH, water concentration, and surfactant additives. Materials Research Bulletin. 2009; 44(5):993-8.
  6. Akhoon SA, Rubab S, Shah MA. A benign hydrothermal synthesis of nanopencils-like zinc oxide nanoflowers. International Nano Letters. 2015; 5:9-13.
  7. Yu D, Cai R, Liu Z. Studies on the photodegradation of Rhodamine dyes on nanometer-sized zinc oxide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2004; 60(7):1617-24.
  8. Curri ML, Comparelli R, Cozzoli PD, Mascolo G, Agostiano A. Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye. Materials Science and Engineering: C. 2003; 23(1-2):285-9.
  9. Chu SY, Yan TM, Chen SL. Characteristics of sol-gel synthesis of ZnO-based powders. Journal of materials science letters. 2000; 19(4):349-52.
  10. Damonte LC, Zélis LM, Soucase BM, Fenollosa MH. Nanoparticles of ZnO obtained by mechanical milling. Powder Technology. 2004; 148(1):15-9.
  11. Dai ZR, Pan ZW, Wang ZL. Novel nanostructures of functional oxides synthesized by thermal evaporation. Advanced Functional Materials. 2003; 13(1):9-24.
  12. Vernitskaya, T.V., Efimov, O.N., Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russian Chemical Reviews 1997; 66 (5): 443 – 457
  13. Aldissi M, editor. Intrinsically conducting polymers: an emerging technology. Springer Science & Business Media; 2013.
  14. Chaluvaraju BV, Ganiger SK, Murugendrappa MV. Synthesis, characterization and DC conductivity studies of polypyrrole/molybdenum trioxide composites. Polymer Science Series B. 2014; 56(6):935-9.
  15. Inzelt G. Rise and rise of conducting polymers. Journal of Solid State Electrochemistry. 2011; 15:1711-8.
  16. Bredas JL, Street GB. Polarons, bipolarons, and solitons in conducting polymers. Accounts of chemical research. 1985; 18(10):309-15.
  17. Cheng Q, He Y, Pavlinek V, Li C, Saha P. Surfactant-assisted polypyrrole/titanate composite nanofibers: Morphology, structure and electrical properties. Synthetic Metals. 2008;158(21-24):953-7.
  18. Behniafar H, Malekshahinezhad K. A unique path to reach thermostable polypyrrole/Pd microfibers via chemical oxidative polymerization. Colloid and Polymer Science. 2014;292:2083-8.
  19. Lee DS, Lee DD, Hwang HR, Paik JH, Huh JS, Lim JO, Lee JJ. Characteristics of electrochromic device with polypyrrole and WO 3. Journal of Materials Science: Materials in Electronics. 2001; 12:41-4.
  20. Ramesan MT, Nidhisha V, Jayakrishnan P. Facile synthesis, characterization and material properties of a novel poly (vinyl cinnamate)/nickel oxide nanocomposite. Polymer International. 2017; 66(4):548-56.
  21. Ma X, Liu A, Xu H, Li G. Growth of ramification-like ZnO rods in the presence of polyaniline. Colloid and Polymer Science. 2007; 285:1631-5.
  22. Huang J, Yang Z. Synthesis of ZnO/polypyrrole composites and an application in Zn/Ni rechargeable batteries. RSC Advances. 2014;4(37):19205-9.
  23. Nguyen-Le MT, Lee BK. High temperature synthesis of interfacial functionalized carboxylate mesoporous TiO2 for effective adsorption of cationic dyes. Chemical Engineering Journal. 2015; 281:20-33.
  24. Tajizadegan H, Torabi O, Heidary A, Golabgir MH, Jamshidi A. Study of methyl orange adsorption properties on ZnO–Al2O3 nanocomposite adsorbent particles. Desalination and Water Treatment. 2016; 57(26):12324-34.
  25. Salem AN, Ahmed MA, El-Shahat MF. Selective adsorption of amaranth dye on Fe3O4/MgO nanoparticles. Journal of Molecular Liquids. 2016 ; 219:780-8.
  26. Nassar MY, Mohamed TY, Ahmed IS, Samir I. MgO nanostructure via a sol-gel combustion synthesis method using different fuels: an efficient nano-adsorbent for the removal of some anionic textile dyes. Journal of Molecular Liquids. 2017;225:730-40.
  27. Goel P, Choudhury N, Chaplot SL. Superionic behavior of lithium oxide Li2O: a lattice dynamics and molecular dynamics study. Physical Review B. 2004;70(17):174307.
  28. Keen DA. Disordering phenomena in superionic conductors. Journal of Physics: Condensed Matter. 2002; 14(32):R819.
  29. Faisal M, Khasim S. Ku-band EMI shielding effectiveness and dielectric properties of Polyaniline-Y2O3 Polymer Science Series A. 2014; 56:366-72.
  30. Papageorgiou DG, Kinloch IA, Young RJ. Graphene/elastomer nanocomposites. Carbon. 2015; 95:460-84.
  31. Dhingra M, Shrivastava S, Kumar PS, Annapoorni S. Polyaniline mediated enhancement in band gap emission of Zinc Oxide. Composites Part B: Engineering. 2013;45(1):1515-20.
  32. Huang J, Yang T, Kang Y, Wang Y, Wang S. Gas sensing performance of polyaniline/ZnO organic-inorganic hybrids for detecting VOCs at low temperature. Journal of Natural Gas Chemistry. 2011; 20(5):515-9.
  33. Zheng H, Ncube NM, Raju K, Mphahlele N, Mathe M. The effect of polyaniline on TiO 2 nanoparticles as anode materials for lithium ion batteries. SpringerPlus. 2016; 5:1-6.
  34. Suryanarayana C, Norton MG, Suryanarayana C, Norton MG. X-rays and Diffraction. Springer US; 1998.
  35. Li G, Liao X, Sun X, Yu J, He J. Preparation of conductive polypyrrole (PPy) composites under supercritical carbon dioxide conditions. Frontiers of Chemistry in China. 2007 ; 2:118-22.
  36. Yasin SF, Zihlif AM, Ragosta G. The electrical behavior of laminated conductive polymer composite at low temperatures. Journal of materials science: Materials in electronics. 2005; 16:63-9.
  37. Jin, Y.X. Zhang, F.L. Meng, Y. Jia, T. Luo, X.Y. Yu, J. Wang, J.H. Liu, X.J. Huang, Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(VI) in the presence of phenol, J. Hazard Mater. 276 (2014) 400–407.
  38. Yadav, M.S., Singh, N. & Bobade, S.M. Zinc oxide nanoparticles and activated charcoal-based nanocomposite electrode for supercapacitor application. Ionics 24, 3611–3630 (2018).
  39. Basavaraja C, Kim WJ, Thinh PX, Huh DS. Electrical conductivity studies on water‐soluble polypyrrole–graphene oxide composites. Polymer composites. 2011 Dec;32(12):2076-83.
  40. Prasad Sunkara, Kesavaulu Masula, Veerasomaiah Puppala, Yadgiri Bhongiri, Vijaykumar Pasala and Manohar Basude, Highly active zinc oxide-supported lithium oxide catalyst for solvent free Knoevenagel Condens, J. Chem. Sci. (2021)133:67.
  41. Megha,Y.T.Ravikiran,S.C.VijayaKumari,H.G.Prakash,S.Manjunath,M.Revansidappa,M.Prashantkumar,S.Thomas;AC Conductivity studies in copper decorated and Zinc oxide embedded polypyrrole compositesnanoroda :interfacial effects: Material Science in semiconducyor processing Volume110, 104964.
  42. Yiqiu Li, Yang Cao, Xiangxin Guo; Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75Ta0.25O12 solid electrolytes, Solid State Ionics 253 (2013) 76–8.

Special Issue Open Access Original Research
Volume 12
Special Issue 06
Received 19/03/2024
Accepted 13/06/2024
Published 27/09/2024


Login


My IP

PlumX Metrics