[{“box”:0,”content”:”
n
n
- n t
n
Benoy Kumar Singh
[/foreach]
n
n
n
- [foreach 286] [if 1175 not_equal=””]n t
- , , ,
n[/if 1175][/foreach]
n
Abstract
nWe carry out the work on Kaniadakis holographic dark energy KHDE with hybrid expansion law by taking the scale factor containing both exponent and exponential form. Therby revealing the present state of accelerating and expanding universe in the flat Friedmann-Robertson-Walber universe. The deceleration parameter q portrays whether he universe is decelerating or accererating. q greater than zero suggests the universe is slowing down or getting decelerated and q less than zero indicates that universe is speeding up or accelerated..Since in present work the value of q lies between -1<q0 i.e. EoS parameter lies in the quintessence region. In the present model EoS parameter do not cross the phantom line even at future z= -1, which is considered to be the dark energy dominated phase and is responsible for the current accelerated phase of the universe. The equation of state parameter EoS replicate the important cosmological behaviour where kD can be quintessence-like, phantom-like or cross the phantom divide before or after the present epoch.
n
Keywords: KHDE , FLRW universe, quientessence, phantom, EoS parameter,scale factor.
n[if 424 equals=”Regular Issue”][This article belongs to Journal of Polymer and Composites(jopc)]
n
n
n
n
n
nn
nn[if 992 equals=”Open Access”] Full Text PDF[else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(‘Full Text PDF‘);n }nelse if (fieldValue == ‘administrator’) { document.write(‘Full Text PDF‘); }nelse if (fieldValue == ‘jopc’) { document.write(‘Full Text PDF‘); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]nn
Browse Figures
n
n
n[/if 379]n
References
n[if 1104 equals=””]n
1.
Roos M. Introduction to Cosmology.Wiley, Chichester, UK: 2003 p 279. 2. Perlmutter S et al. Supernova Cosmology Project, Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J., 1999; 517: p 565–586.
3.
Reiss A G et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J., 1998; 116: p 1009–1038.
4.
Rivera C E, Quintero M A C and Capozziello S. A deep learning approach to cosmological dark energy models. J.Cosmol. Astropart . Phys., 2020; 03: p 008.
5.
Capozziello S, Troisi A and Cardone V F. Dark energy and dark matter as curvature effects. New Astron. Rev., 2007; 51: p 341–345.
6.
Capozziello S. Dark energy model towards observational tests and data. eConf.,2006; C0602061: p 04.
7.
Frieman J, Turner M and Huterer D. Dark energy and the accelerating universe. Ann. Rev. Astron. Astrophys., 2008; 46: p 385–432.
8.
Nurbaki A N, Capozziello S and Deliduman C. Spherical and cylindrical solutions in f(T) gravity by Nother symmetry approach. Eur. Phys. J. C, 2020; 80,2: p 108.
9.
Harko T, Lobo F S N, Nojiri S and Odintsov S D. F(R,T) gravity. Phys. Rev. D, 2011; 84, p 024020.
10.
Capozziello S, Matsumoto J, Nojiri S and Odintsov S D. Dark energy from modified gravity with Lagrange multipliers. Phys. Lett. B, 2010; 693, p 198–208.
11.
Capozziello S, Cardone V F and Troisi A. Reconciling dark energy models with f(R) theories. Phys. Rev. D, 2005; 71, p 043503.
12.
Capozziello S, Nojiri S, Odintsov S D and Troisi A. Cosmological viability of f(R) gravity as an ideal fluid and its compatibility with a matter dominated phase. Phys. Lett. B, 2006; 639, p 135–143.; Sharma U K, Zia R, Pradhan A and Beesham A. Stability of LRS Bianchy type-I cosmological models in f(R,T) gravity. Res. Astron. Astrophys.,2019; 19, p 055.
13.
Rubin V C and Ford Jr W K. Rotation of Andromeda Nebula from a spectroscopic survey of emission regions. Astrophys. J., 1970; 159, p 379.
14.
Bergstrom L. Nonbaryonic dark matter: Observational evidence and detection methods. Rep. Prog. Phys., 2000; 63, p 793.
15.
Sahni V. Dark matter and dark energy. Lect. Notes Phys., 2004; 653, p 141.
16.
Cirelli M, Fornengo N and Strumia A. Minimal dark matter. Nucl. Phys. B, 2006; 753, p 178.
17.
Dil E. Cosmology of q-deformed dark matter and dark energy. Phys. Dark Univ.,2017;16, p 1; Verlinde E P. Emergent gravity and dark universe. SciPost Phys., 2017; 2, p 16.
18.
Vagnozzi S, Visinelli L, Mena O and Mota D F. Do we have any hope of detection scattering between dark energy and baryons through cosmology? Mon. Not. R. Astron. Soc., 2020; 493, 1, p 1139.
19.
Nunes R C , Bonilla A, Pan S and Saridakis E N. Observational constraints on f(T) gravity from varying fundamental constants. Eur. Phys. J. C., 2017; 77, p 230.
20.
Langlois D, Saito R, Yamauchi D and Noui K. Scalar-tensor theories and modified gravity in the wake of GW 170817. Phys. Rev. D, 2018; 97, p 061501.
21.
Valentino E Di, Melchiorri A, Mena O and Vagnozzi S. Nonminimal dark sector physics and cosmological tensions. Phys. Rev. D, 2020; 101, p 063502.
22.
Peracaula J S, Gomez-Valent A and de Cruz Perez J. The H0 tension in light of vacuum dynamics in the universe. Phys. Lett. B, 2017: 774, p 317.
23.
Visinelli L and Vagnozzi S. Cosmological window onto the string axiverse and the supersymmetry breaking scale. Phys. Rev. D, 2019: 99, p 063517.
24.
Reiss et al. Astrophys. J, 2019: 876: p 85.
25.
Valentino E D and Bridle S. Expolring the tension between current cosmic microwave background and cosmic shear data. Symmetry, 2018: 10, p 585
26.
Peracaula J S et al. Brans-Dicke gravity with a cosmological constant smoothes out ɅCDM tensions. Astrophys. J., 2019: 886, p L6.
27.
Valentino E Di, Melchiorri A and Silk J. Planck evidence for a closed universe and a possible crisis for cosmology. Nat. Astron., 2019: 4, p 196.
28.
Cohen A G, Kaplan D B and Nelson A E. Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett., 1999: 82, p 4971; Wang S, Wang Y and Li M. Holographic dark energy. Phys. Rep., 2017: 1, p 696.
29.
Li M. A model of holographic dark energy. Phys. Lett. B, 2004: 603 p 1.
30.
Susskind L. The world as a hologram. J. Math. Phys., 1995: 36, p 6377.
31.
Bousso R. The holographic principle for general backgrounds. Class. Quant. Grav. 2000: 17, p 997.
32.
Tavayef M, Sheykhi A, Bamba K and Moradpour H. Tsallis holographic dark energy. Phys. Lett. B, 2018: 781 p 195.
33.
Tsallis C and Cirto L J L. Black hole thermodynamical entropy. Eur. Phys. J. C, 2013:73, p 2487.
34.
Vershynina A. Entanglement rates for Renyi, Tsallis, and other entropies. J. Math. Phys., 2019: 60, p 022201.
35.
Srivastava V and Sharma U K. Tsallis holographic dark energy with hybrid expansion law. Int. J. Geom. Methods Mod. Phys., 2020: 17, 11, p 2050144.
36.
Moradpour H, Ziaie A H and Zangeneh M K. Generalized entropies and corresponding holographic dark energy models. Eur. Phys. J. C, 2020: 80, 8, p 732.
37.
Drepanou N et al. Kaniadakis holographic dark energy and cosmology. Eur. Phys. J. C, 2022: 82, 5, p 449.
38.
Sharma U K et al. Kaniadakis holographic dark energy in nonflat universe. Int. J. Mod. Phys.D, 2022: 31, 3, p 2250013.
39.
Kaniadakis G. Statistical mechanics in the context of special relativity. Phys. Rev. E, 2002: 66,p 056125. ; Kaniadakis G. Statistical mechanics in the context of special relativity II. Phys. Rev. E, 2005: 72, 036108.
40.
Hernandez-Almada et al. Kaniadakis holographic dark energy: observational constraints and global dynamics. Mon. Not. Roy. Astron. Soc., 2022: 511, 3, p 4147–4158; Hernandez-Almada et al. Observational constraints and dynamical analysis of Kaniadakis horizon-entropy cosmology. Mon. Not. Roy. Astron. Soc., 2022: 512, 4, p 5122–5123.
41.
Lymperis A, Basilakos S and Saridakis E N. Modified cosmology through Kaniadakis horizon entropy. Eur. Phys. J. C, 2021: 81, 11, p 1037.
42.
Luciano G G. Gravity and cosmology in Kaniadakis statistics: current status and future challenges. Entropy, 2022: 24, 12, p 1712.
43.
Singh B K, Sharma U K, Sharma L K and Dubey V C. Statefinder hierarchy of Kaniadakis holographic dark energy with composite null diagnostic. Int. J. Geom. Methods Mod. Phys., 2023: 20, 5, p 2350074.
44.
Nojiri S, Odintsov S D and Faraoni V. From nonextensive statistics and black hole entropy to the holographic dark universe. Phys. Rev. D, 2022: 105, 4, p 044042.
45.
Rani S et al. Cosmographic and thermodynamic analysis of Kaniadakis holographic dark energy. Int. J. Mod. Phys. D, 2022: 31, 10, p 2250078.
46.
Dubey V C et al. Some features of Kaniadakis holographic dark energy model. Int. J. Geom. Methods Mod. Phys., 2023: 20, 2, p 2350036.
47.
Korunur S. Kaniadakis holographis dark energy with scalar field in Bianchi type-V universe. Int. J. Mod. Phys. A, 2022: 37, 35, p 2250214.
48.
Ghaffari S. Kaniadakis holographis dark energy in Brans-Dicke cosmology. Mod. Phys. Lett. A, 2022: 37, 23, p 2250152.
49.
Sadeghi J., Gashti S N and Azizi T. Tsallis and Kaniadakis holographic dark energy with Complex Quintessence theory in Brans-Dicke cosmology. [arXiv:2203.04375[gr-qc]]
50.
Daly R A et al. Improved Constraints on the Acceleration History of the Universe and th Properties of the Dark Energy. Astrophys. J., 2008: 677, p 1.
nn[/if 1104][if 1104 not_equal=””]n
- [foreach 1102]n t
- [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
n[/foreach]
n[/if 1104]
nn
nn[if 1114 equals=”Yes”]n
n[/if 1114]
n
n
n
Volume | 11 |
Issue | 07 |
Received | August 18, 2023 |
Accepted | August 31, 2023 |
Published | September 25, 2023 |
n
n
n
n
n[/foreach]
n[/if 1190] [if 1177 not_equal=””]n
n
n[/foreach]
n[/if 1177]
n
n
n
n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n n function myfun() {n x = document.getElementById(“editor”);n y = document.getElementById(“down”);n z = document.getElementById(“up”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n function myfun2() {n x = document.getElementById(“reviewer”);n y = document.getElementById(“down2”);n z = document.getElementById(“up2”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n”}]