Carlos Armenta-Déu,
Ignacio Madrazo,
Jorge Contreras,
Matilde Santos,
Abstract
This work focuses on the study and analysis of bladeless wind turbines (BWT) as an alternative to operating vertical-axis wind turbines (VAWT) and horizontal-axis wind turbines (HAWT). A mathematical analysis of the BWT oscillation under wind force allows the development of specific mathematical expressions for the oscillation speed and BWT mast displacement at any height. The oscillation movement is submitted to a Strouhal constant number condition, resulting in an algorithm that allows the determination of the BWT mast profile to maintain a constant vortex shedding oscillation frequency, a required condition to preserve the integrity of the mast material and to reduce fatigue and mechanical stress. The predicted results from the mathematical analysis show a good agreement, higher than 95% on average, with reported data in literature, thus, validating the proposed mathematical procedure. A simulation run for a designed prototype shows a high agreement between mathematical development and the linear approach currently adopted by the manufacturing processes (R2=0.9885); therefore, the proposed methodology for the BWT design is valid.
Keywords: Wind energy, bladeless wind turbine, performance simulation and optimization, turbulent wind regime operation, vortex
[This article belongs to Journal of Offshore Structure and Technology ]
Carlos Armenta-Déu, Ignacio Madrazo, Jorge Contreras, Matilde Santos. Vibrational Wind Turbine Design. Journal of Offshore Structure and Technology. 2024; 11(03):32-45.
Carlos Armenta-Déu, Ignacio Madrazo, Jorge Contreras, Matilde Santos. Vibrational Wind Turbine Design. Journal of Offshore Structure and Technology. 2024; 11(03):32-45. Available from: https://journals.stmjournals.com/joost/article=2024/view=193335
References
1. International Energy Agency. Key World Energy Statistics. Paris: International Energy Agency, 2007. p. 6.
2. International Energy Agency. World Energy Outlook. Paris: OECD/IEA, 2009. p. 17.
3. Kadoshin S, Nishiyama T, Ito T. The trend in current and near-future energy consumption from a statistical perspective. Applied Energy. 2000;67:407–417. DOI: 10.1016/S0306-2619(00)00033-7.
4. Pioro I, Duffey R. Current status of electricity generation in the world and future of nuclear power industry. In: Managing Global Warming. Elsevier; 2019:67–114. DOI: 10.1016/B978-0-12-814104-5.00003-X.
5. Lerede D, Savoldi L. Might future electricity generation suffice to meet the global demand? Energy Strategy Reviews. 2023;47:101080. DOI: 10.1016/j.esr.2023.101080.
6. Armaroli N, Balzani V. The future of energy supply: Challenges and opportunities. Angewandte Chemie. 2007;46:52–66. DOI: 10.1002/anie.200602373, PubMed: 17103469.
7. Breyer C. A global overview of future energy. In: Future Energy. Elsevier; 2020:727–756. DOI: 10.1016/B978-0-08-102886-5.00034-7.
8. Red de política de energía renovable para el Siglo XXI (REN21). Renewables Global Status Report 2023 Collection Energy Demand Modules. Available at: https://www.ren21.net/wp-content/
uploads/2019/05/GSR2023-Demand-Launch-Presentation.pdf; 2023.
9. Wolniak R, Skotnicka-Zasadzień B. Development of wind energy in EU countries as an alternative resource to fossil fuels in the years 2016–2022. Resources. 2023;12:96. DOI: 10.3390/resources
12080096.
10. Brown LR. The Great Transition: Shifting from Fossil Fuels to Solar and Wind Energy. WW Norton & Company; 2015.
11. Arutyunov VS, Lisichkin GV. Energy resources of the 21st century: Problems and forecasts. Can renewable energy sources replace fossil fuels? Russian Chemical Reviews. 2017;86:777–804. DOI: 10.1070/RCR4723.
12. Electricity Generation from Solar and Wind Power. Our World in Data. Solar and wind power generation. Ember and Energy Institute. Available from: ourworldindata.org
13. Steg L, Shwom R, Dietz T. What drives energy consumers?: Engaging people in a sustainable energy transition. IEEE Power and Energy Magazine. 2018;16:20–28. DOI: 10.1109/MPE.2017.
2762379.
14. Zhao ZY, Chen YL, Chang RD. How to stimulate renewable energy power generation effectively? – China’s incentive approaches and lessons. Renewable Energy. 2016;92:147–156. DOI: 10.1016/j.renene.2016.02.001.
15. Sardianou E, Genoudi P. Which factors affect the willingness of consumers to adopt renewable energies? Renewable Energy. 2013;57:1–4. DOI: 10.1016/j.renene.2013.01.031.
16. Yaqoot M, Diwan P, Kandpal TC. Review of barriers to the dissemination of decentralized renewable energy systems. Renewable and Sustainable Energy Reviews. 2016;58:477–490. DOI: 10.1016/j.rser.2015.12.224.
17. Heldeweg MA, Saintier S. Renewable energy communities as ‘socio-legal institutions’: A normative frame for energy decentralization? Renewable and Sustainable Energy Reviews. 2020;119:109518. DOI: 10.1016/j.rser.2019.109518.
18. Liu J, Zhang D, Cai J, Davenport J. Legal systems, national governance and renewable energy investment: Evidence from around the world. British Journal of Management. 2021;32:579–610. DOI: 10.1111/1467-8551.12377.
19. Wilder M, Drake L. International law and the renewable energy sector. In: Carlarne CP, Gray KR, Tarasofsky R, editors. The Oxford Handbook of International Climate Change Law. UK: Oxford University Press; 2016; pp. 357–90.
20. Mathews J, Thurbon E, Kim SY, Tan H. Gone with the wind: How state power and industrial policy in the offshore wind power sector are blowing away the obstacles to East Asia’s green energy transition. Rev Evol Pol Eco. 2023;4:27–48. DOI: 10.1007/s43253-022-00082-7.
21. Markard J, Petersen R. The offshore trend: Structural changes in the wind power sector. Energy Policy. 2009;37:3545–3556. DOI: 10.1016/j.enpol.2009.04.015.
22. Zhixin W, Chuanwen J, Qian A, Chengmin W. The key technology of offshore wind farm and its new development in China. Renewable and Sustainable Energy Reviews. 2009;13:216–222. DOI: 10.1016/j.rser.2007.07.004.
23. Wang L, Wei J, Wang X, Zhang X. The development and prospect of offshore wind power technology in the world. In: World Non-grid-Connected Wind Power and Energy Conference. IEEE; 2009:1–4. DOI: 10.1109/WNWEC.2009.5335761.
24. Da Z, Xiliang Z, Jiankun H, Qimin C. Offshore wind energy development in China: Current status and future perspective. Renewable and Sustainable Energy Reviews. 2011;15:4673–4684. DOI: 10.1016/j.rser.2011.07.084.
25. Linnerud K, Dugstad A, Rygg BJ. Do people prefer offshore to onshore wind energy? The role of ownership and intended use. Renewable and Sustainable Energy Reviews. 2022;168:112732. DOI: 10.1016/j.rser.2022.112732.
26. Xu W, Liu Y, Wu W, Dong Y, Lu W, Liu Y, Zhao B, Li H, Yang R. Proliferation of offshore wind farms in the North Sea and surrounding waters revealed by satellite image time series. Renewable and Sustainable Energy Reviews. 2020;133:110167. DOI: 10.1016/j.rser.2020.110167.
27. Dedecca JG, Hakvoort RA, Ortt JR. Market strategies for offshore wind in Europe: A development and diffusion perspective. Renewable and Sustainable Energy Reviews. 2016;66:286–296. DOI: 10.1016/j.rser.2016.08.007.
28. Kaldellis JK, Kapsali M. Shifting towards offshore wind energy—Recent activity and future development. Energy Policy. 2013;53:136–148. DOI: 10.1016/j.enpol.2012.10.032.
29. Politis ES, Prospathopoulos J, Cabezon D, Hansen KS, Chaviaropoulos PK, Barthelmie RJ. Modeling wake effects in large wind farms in complex terrain: The problem, the methods and the issues. Wind Energy. 2012;15:161–182. DOI: 10.1002/we.481.
30. Barthelmie RJ, Hansen K, Frandsen ST, Rathmann O, Schepers JG, Schlez W, Phillips J, Rados K, Zervos A, Politis ES, Chaviaropoulos PK. Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy. 2009;12:431–444. DOI: 10.1002/we.348.
31. Amaral L, Castro R. Offshore wind farm layout optimization regarding wake effects and electrical losses. Eng Appl Artif Intell. 2017;60:26–34. DOI: 10.1016/j.engappai.2017.01.010.
32. Christiansen MB, Hasager CB. Wake effects of large offshore wind farms identified from satellite SAR. Remote Sensing of Environment. 2005;98:251–268. DOI: 10.1016/j.rse.2005.07.009.
33. Sundar RM, Sullivan JP. Performance of wind turbines in a turbulent atmosphere. Solar Energy. 1983;31:567–575. DOI: 10.1016/0038-092X(83)90173-1.
34. Cocina V, Di Leo P, Pastorelli M, Spertino F. Choice of the most suitable wind turbine in the installation site: A case study. In: International Conference on Renewable Energy Research and Applications (ICRERA). IEEE; 2015:1631–1634. DOI: 10.1109/ICRERA.2015.7418682.
35. Armenta-Déu C. Improved marine wind farm layout. Journal of Offshore Structure and Technology. 2024;11:32–40.
36. Guerrero T, Constante J. Distribución factible de aerogeneradores en un parque eólico. OLADE. Available at: https://enerlac.olade.org/index.php/ENERLAC/article/view/22.
37. Tandel R, Shah S, Tripathi S. A state-of-art review on bladeless wind turbine. Journal of Physics: Conference Series. 2021;1950:012058. DOI: 10.1088/1742-6596/1950/1/012058.
38. Vera A, Cardozo N, Jimmikc A. Reynolds number. Available at: https://repository.uniminuto.edu
/handle/10656/4849.
39. Manwell JF, McGowan JG, Rogers AL. Wind Energy Explained: Theory, Design and Application. John Wiley & Sons; 2010.
40. Villarreal DJY, S.L., V.B. Resonant Wind Turbines by VIV. Available at: https://vortexblade
less.com.
41. Plazaola Iguaran A. Modelización mediante CFD de un campo eólico de aerogeneradores sin palas usando vortex induced vibration (VIV). Repositorio Institucional de Documentos. Available at: https://zaguan.unizar.es/record/120320?ln=es.
42. Sánchez-Hidalgo MÁ, Atienza-Pascual R, Villareal DY. Diseño y Optimización de una Estructura Geométrica Cilíndrica para un Desprendimiento Uniforme de Vórtices de Von Karman. Tecnología y Desarrollo. 2017;15. Repositorio Universidad Alfonso X (UAX), Madrid, Spain.
43. Peterson EW, Hennessey JP Jr. On the use of power laws for estimates of wind power potential. Journal of Applied Meteorology. 1978;17:390–394. DOI: 10.1175/1520-0450(1978)0172.0.CO;2.
44. Hsu SA, Meindl EA, Gilhousen DB. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. Journal of Applied Meteorology. 1994;33:757–765. DOI: 10.1175/1520-0450(1994)0332.0.CO;2.
45. Touma JS. Dependence of the wind profile power law on stability for various locations. Journal of the Air Pollution Control Association. 1977;27:863–866. DOI: 10.1080/00022470.1977.10470503.
46. Villarreal DJY. Electrical power generator and an electrical power generation method. US20170284365A1. United States, 2017.

Journal of Offshore Structure and Technology
| Volume | 11 |
| Issue | 03 |
| Received | 10/09/2024 |
| Accepted | 04/10/2024 |
| Published | 07/10/2024 |
PlumX Metrics
