Effect of Nano Metal Oxide Loading Rates on Polymer-Nano Metal Oxide Nanocomposites

Year : 2024 | Volume :14 | Issue : 01 | Page : 1-12
By
vector

Haydar U. Zaman,

  1. Assistant Professor, Department of Physics, National University of Bangladesh and Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission,, , Bangladesh

Abstract

Many industries, such as those in the fields of medicine, textiles, cosmetics, agriculture, optics, food packaging, optoelectronics, semiconductors, aerospace, building materials, and catalysis, utilise nanoparticles and nanocomposites in a variety of applications. A unique class of materials, polymeric nanocomposites outperform their microparticle counterparts by fusing organic polymers with inorganic nanoparticles. Consequently, they ought to advance the field of engineering applications. The presence of inorganic nanoparticles can significantly alter the properties of a polymer matrix. Titanium dioxide (nTiO2) and zinc oxide (nZnO), two nanoparticle reinforced polymer flexible composites, offer new design opportunities with exceptional mechanical and chemical capabilities. The mechanical, morphological, and thermal properties of polypropylene (PP) composite materials filled with nTiO2 and nZnO were investigated in this study. Nanoparticles made up between 1 and 5 weight percent of the matrix. For improved surface adherence and fine dispersion, nanoparticles were coated with maleic anhydride grafted styrene ethylene butylene styrene (SEBS-g-MA) and silane, respectively, prior to melt mixing. To investigate the effects of modified and unmodified nanoparticles at various concentrations on the mechanical characteristics, morphological, and thermal properties, PP/nanoparticle nanocomposites were made using a twin-screw extruder and a heat press. Due to the stiff structure of nanoparticles, impact strength and elongation at break have decreased while all tensile parameters, such as yield strength and tensile strength, have increased. In spite of the fact that nTiO2 has a higher hardness than nZnO, nanocomposites containing it showed more elongation than those containing the latter. The PP/nTiO2 nanocomposite produced more than SEBS-g-MA due to the presence of silane. However, compared to nZnO nanocomposites, silane-modified nTiO2 nanocomposites have better tensile properties. Reduced elongation at break is guaranteed in this case since the more refined structure of nTiO2 with PP has been induced. The better compatibility of nTiO2 with silane is probably to blame for this. Additionally, thermal analysis was done to figure out the melt temperature, crystallization temperature, and crystallinity level.

Keywords: Nanocomposites, polypropylene, nano-TiO2, nano-ZnO, morphology, mechanical properties.

[This article belongs to Journal of Nanoscience, NanoEngineering & Applications (jonsnea)]

How to cite this article:
Haydar U. Zaman. Effect of Nano Metal Oxide Loading Rates on Polymer-Nano Metal Oxide Nanocomposites. Journal of Nanoscience, NanoEngineering & Applications. 2024; 14(01):1-12.
How to cite this URL:
Haydar U. Zaman. Effect of Nano Metal Oxide Loading Rates on Polymer-Nano Metal Oxide Nanocomposites. Journal of Nanoscience, NanoEngineering & Applications. 2024; 14(01):1-12. Available from: https://journals.stmjournals.com/jonsnea/article=2024/view=147542

Browse Figures

References

  1. Aydemir D, Uzun G, Gumuş H, Yildiz S, Gumuş S, Bardak T, Gunduz G. Nanocomposites of polypropylene/nano titanium dioxide: Effect of loading rates of nano titanium dioxide. Mater Sci. 2016;22:364– DOI: 10.5755/j01.ms.22.3.8217.
  2. Tang J, Wang Y, Liu H, Belfiore LA. Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polymer. 2004;45:2081– DOI: 10.1016/j.polymer.2003.11.046.
  3. Wang H, Xian G, Li H. Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite. Compos Part A. 2015;76:172– DOI: 10.1016/j.compositesa.2015.05.027.
  4. Zaman HU, Khan RA. Organically modified peanut shell flour-reinforced polypropylene nanocomposites: Effect of fiber surface treatment on basic properties. Int J Anal Appl Chem. 2022;8:19–30.
  5. Zaman HU, Khan RA. A review on polymer nanocomposites and its applications. Int J Adv Sci Eng. 2023;9:3006– DOI: 10.29294/IJASE.9.3.2023.3006-3023.
  6. Zhu J, Wilkie CA. Thermal and fire studies on polystyrene-clay nanocomposites. Polym Int. 2000;49:1158– DOI: 10.1002/1097-0126(200010)49:103.0.CO;2-G.
  7. Selvakumar V, Manoharan N. Mechanical and morphological properties of PP/MWNT/MMT hybrid nanocomposites. Int J Eng Technol. 2014;6:2351–6.
  8. Montazer M, Morshedi S. Photo bleaching of wool using nano TiO2 under daylight irradiation. J Ind Eng Chem. 2014;20:83–90. DOI: 10.1016/j.jiec.2013.04.023.
  9. Zhou JP, Qiu KQ, Fu WL. The surface modification of ZnOw and its effect on the mechanical properties of filled polypropylene composites. J Compos Mater. 2005;39:1931– DOI: 10.1177/0021998305051809.
  10. Zaman HU, Khan RA. Investigation into Ultra-High Molecular Weight Polyethylene/Modified Nano-Zinc Oxide Nanocomposites. Int J Adv Sci Eng. 2023;9:2848– DOI: 10.29294/IJASE.9.3.2023.2848-2856.
  11. Zaman HU, Khan RA. Effect of coupling agent on Organoclay dispersion in polyethylene/
    Organoclay nanocomposites for packaging industry. Int J Nanobiotechnol. 2023;8:1–11.
  12. Kruenate J, Tongpool R, Panyathanmaporn T, Kongrat P. Optical and mechanical properties of polypropylene modified by metal oxides. Surf Interface Anal. 2004;36:1044– DOI: 10.1002/sia.1833.
  13. Gündoğan K, Öztürk DK. Investigation of properties ZnO, CuO, and TiO2 reinforced polypropylene composites. NISC. PR, USA. 2021;414–9.
  14. Lin OH, Akil HM, Mahmud S. Effect of particle morphology on the properties of polypropylene/nanometric zinc oxide (PP/nanoZnO) composites. Adv Compos Lett. 2009;18. DOI: 10.1177/
  15. Zaman HU, Khan RA. Mechanical and thermal properties of extruded thermoplastic polyester elastomer/TiO2 nanocomposites: Effect of surface modification. Adv J Sci Eng. 2022;3:136–
  16. Chandramouleeswaran S, Mhaske ST, Kathe AA, Varadarajan PV, Prasad V, Vigneshwaran N. Functional behaviour of polypropylene/ZnO-soluble starch nanocomposites. Nanotechnology. 2007;18:385702. DOI: 10.1088/0957-4484/18/38/385702
  17. Zaman HU, Khan RA. Fabrication and surface modified nonwoven Calotropis gigantea Fiber Mat reinforced polypropylene composites by film stacking method. J Thin Films Coating Sci Technol Appl. 2022;9:10–21.
  18. Awang M, Wan Mohd Comparative studies of titanium dioxide and zinc oxide as a potential filler in polypropylene reinforced rice husk composite. IOP Conf Ser Mater Sci Eng. 2018;342:012046. DOI: 10.1088/1757-899X/342/1/012046.
  19. Demir H, Atikler U, Balköse D, Tıhmınlıoğlu F. The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–luffa fiber composites. Compos Part A. 2006;37:447– DOI: 10.1016/j.compositesa.2005.05.036.
  20. Zaman HU, Khan RA. Study on mechanical and physical properties of wood-plastic nanocomposites after fiber surface treatment. Int J Chem Eng Process. 2023;8:34–43.
  21. Hashimoto M, Takadama H, Mizuno M, Kokubo T. Mechanical properties and apatite forming ability of TiO2 nanoparticles/high density polyethylene composite: Effect of filler content. J Mater Sci Mater Med. 2007;18:661– DOI: 10.1007/s10856-007-2317-1. PubMed: 17546429.
  22. Kubacka A, Fernández-García M, et al. Titanium dioxide-polymer nanocomposites with advanced properties. Nano-Antimicrobials. 2012;119–
  23. Wacharawichanant S, Phutphongsai A. The study of morphology and mechanical properties of compatibilized polypropylene/zinc oxide composites. J Solid Mech Mater Eng. 2007;1:1231– DOI: 10.1299/jmmp.1.1231.
  24. Altan M, Yildirim H, et al. Tensile properties of polypropylene/metal oxide Tojsat. 2011;1:25–30.
  25. Supaphol P, Harnsiri W, Junkasem J. Effects of calcium carbonate and its purity on crystallization and melting behavior, mechanical properties, and processability of syndiotactic polypropylene. J Appl Polym Sci. 2004;92:201– DOI: 10.1002/app.13432.
  26. Esthappan SK, Kuttappan SK, Joseph R. Thermal and mechanical properties of polypropylene/
    titanium dioxide nanocomposite fibers. Mater Des. 2012;37:537– DOI: 10.1016/j.matdes.2012.
    01.038.
  27. Yang CP, Wu YJ, et al. Studies on crystallizations and mechanical properties of polypropylene/
    nano-TiO2 composites. Adv Mater Res. 2013;690:494–8.
  28. Selvin TP, Kuruvilla J, Sabu T. Mechanical properties of titanium dioxide-filled polystyrene microcomposites. Mater Lett. 2004;58:281– DOI: 10.1016/S0167-577X(03)00470-1.
  29. Altan M, Yildirim H. Mechanical and antibacterial properties of injection molded polypropylene/TiO2 nano-composites: Effects of surface modification. J Mater Sci Technol. 2012;28:686– DOI: 10.1016/S1005-0302(12)60116-9.
  30. Mina MF, Seema S, Matin R, Rahaman MJ, Sarker RB, Gafur MA, Bhuiyan AH. Improved performance of isotactic polypropylene/titanium dioxide composites: Effect of processing conditions and filler content. Polym Degrad Stab. 2009;94:183– DOI: 10.1016/j.polymdegradstab.2008.11.
    006.
  31. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K. Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer. 2001;42:3301– DOI: 10.1016/S0032-3861(00)00741-2.
  32. Kusmono, Mohd Ishak ZA, Chow WS, Takeichi T, Rochmadi. Compatibilizing effect of SEBS-g-MA on the mechanical properties of different types of OMMT filled polyamide 6/polypropylene nanocomposites. Compos Part A. 2008;39:1802– DOI: 10.1016/j.compositesa.2008.08.009.
  33. Ishida H, Campbell S, Blackwell J. General approach to nanocomposite preparation. Chem Mater. 2000;12:1260– DOI: 10.1021/cm990479y.
  34. Setz S, Stricker F, Kressler J, Duschek T, Mlhaupt R. Morphology and mechanical properties of blends of isotactic or syndiotactic polypropylene with SEBS block copolymers. J Appl Polym Sci. 1996;59:1117–28. DOI: 10.1002/(SICI)1097-4628(19960214)59:73.0.CO;2-H.
  35. Rahman MT, Asadul Hoque MA, Rahman GT, Gafur MA, Khan RA, Hossain MK. Study on the mechanical, electrical and optical properties of metal-oxide nanoparticles dispersed unsaturated polyester resin nanocomposites. Results Phys. 2019;13: DOI: 10.1016/j.rinp.2019.102264.
  36. Zaman HU, Hun PD, Khan RA, Yoon KB. Effect of surface-modified nanoparticles on the mechanical properties and crystallization behavior of PP/CaCO3 J Thermoplast Compos Mater. 2013;26:1057–70. DOI: 10.1177/0892705711433351.
  37. Ghazy O, Freisinger B, Lieberwith I, Landfester K. Tuning the size and morphology of P3HT/PCBM composite nanoparticles: Towards optimized water-processable organic solar cells. Nanoscale. 2020;12:22798– DOI: 10.1039/d0nr05847e. PubMed: 33174566.
  38. Wu J, Chan CM. Polypropylene/calcium carbonate nanocomposites. Polymer. 2002;43:2981–9
  39. Ma J, Zhang S, Qi Z, Li G, Hu Y. Crystallization behaviors of polypropylene/montmorillonite nanocomposites. J Appl Polym Sci. 2002;83:1978– DOI: 10.1002/app.10127.
  40. Li Y, Wei GX, Sue HJ. Morphology and toughening mechanisms in clay-modified styrene-butadiene-styrene rubber-toughened polypropylene. J Mater Sci. 2002;37:2447– DOI: 10.1023/A:1015471002812.
  41. Bahloul W, Bounor-Legaré V, David L, Cassagnau P. Morphology and viscoelasticity of PP/TiO2 nanocomposites prepared by in situ sol–gel method. J Polym Sci Part B. 2010;48:1213–22. DOI: 10.1002/polb.22012.
  42. Zebarjad SM, Sajjadi SA, et al. A study on thermal behaviour of HDPE/CaCO3 J Achiev Mater Manuf Eng. 2006;17:173–6.
  43. Garcia M, Van Vliet G, et al. Polypropylene/SiO2 nanocomposites with improved mechanical properties. Rev Adv Mater Sci. 2005;6:169–

Regular Issue Subscription Original Research
Volume 14
Issue 01
Received 12/01/2024
Accepted 15/05/2024
Published 24/05/2024